↓ Skip to main content

Cell Membrane Fatty Acid Composition of Chryseobacterium frigidisoli PB4T, Isolated from Antarctic Glacier Forefield Soils, in Response to Changing Temperature and pH Conditions

Overview of attention for article published in Frontiers in Microbiology, April 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cell Membrane Fatty Acid Composition of Chryseobacterium frigidisoli PB4T, Isolated from Antarctic Glacier Forefield Soils, in Response to Changing Temperature and pH Conditions
Published in
Frontiers in Microbiology, April 2017
DOI 10.3389/fmicb.2017.00677
Pubmed ID
Authors

Felizitas Bajerski, Dirk Wagner, Kai Mangelsdorf

Abstract

Microorganisms in Antarctic glacier forefields are directly exposed to the hostile environment of their habitat characterized by extremely low temperatures and changing geochemical conditions. To survive under those stress conditions microorganisms adapt, among others, their cell membrane fatty acid inventory. However, only little is known about the adaptation potential of microorganisms from Antarctic soil environments. In this study, we examined the adaptation of the cell membrane polar lipid fatty acid inventory of Chryseobacterium frigidisoli PB4(T) in response to changing temperature (0°C to 20°C) and pH (5.5 to 8.5) regimes, because this new strain isolated from an Antarctic glacier forefield showed specific adaptation mechanisms during its detailed physiological characterization. Flavobacteriaceae including Chryseobacterium species occur frequently in extreme habitats such as ice-free oases in Antarctica. C. frigidisoli shows a complex restructuring of membrane derived fatty acids in response to different stress levels. Thus, from 20°C to 10°C a change from less iso-C15:0 to more iso-C17:1ω7 is observed. Below 10°C temperature adaptation is regulated by a constant increase of anteiso-FAs and decrease of iso-FAs. An anteiso- and bis-unsaturated fatty acid, anteiso-heptadeca-9,13-dienoic acid, shows a continuous increase with decreasing cultivation temperatures underlining the particular importance of this fatty acid for temperature adaptation in C. frigidisoli. Concerning adaptation to changing pH conditions, most of the dominant fatty acids reveal constant relative proportions around neutral pH (pH 6-8). Strong variations are mainly observed at the pH extremes (pH 5.5 and 8.5). At high pH short chain saturated iso- and anteiso-FAs increase while longer chain unsaturated iso- and anteiso-FAs decrease. At low pH the opposite trend is observed. The study shows a complex interplay of different membrane components and provides, therefore, deep insights into adaptation strategies of microorganisms from extreme habitats to changing environmental conditions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 24%
Student > Bachelor 10 16%
Student > Master 7 11%
Researcher 7 11%
Other 3 5%
Other 5 8%
Unknown 15 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 21%
Agricultural and Biological Sciences 10 16%
Environmental Science 4 6%
Immunology and Microbiology 3 5%
Earth and Planetary Sciences 3 5%
Other 8 13%
Unknown 21 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 December 2021.
All research outputs
#15,242,707
of 22,663,969 outputs
Outputs from Frontiers in Microbiology
#14,921
of 24,439 outputs
Outputs of similar age
#193,241
of 309,507 outputs
Outputs of similar age from Frontiers in Microbiology
#354
of 511 outputs
Altmetric has tracked 22,663,969 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,439 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,507 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 511 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.