↓ Skip to main content

Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia)

Overview of attention for article published in Frontiers in Microbiology, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia)
Published in
Frontiers in Microbiology, August 2017
DOI 10.3389/fmicb.2017.01583
Pubmed ID
Authors

Hana Zouch, Fatma Karray, Fabrice Armougom, Sandrine Chifflet, Agnès Hirschler-Réa, Hanen Kharrat, Lotfi Kamoun, Wajdi Ben Hania, Bernard Ollivier, Sami Sayadi, Marianne Quéméneur

Abstract

Anaerobic biotechnology using sulfate-reducing bacteria (SRB) is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG), an acidic (pH ~3) by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulfate from PG into sulfide, in order to look for marine SRB of biotechnological interest. A series of sulfate-reducing enrichment cultures were performed using different electron donors (i.e., acetate, formate, or lactate) and sulfate sources (i.e., sodium sulfate or PG) as electron acceptors. Significant sulfide production was observed from enrichment cultures inoculated with marine sediments, collected near the effluent discharge point of a Tunisian fertilizer industry (Sfax, Tunisia). Sulfate sources impacted sulfide production rates from marine sediments as well as the diversity of SRB species belonging to Deltaproteobacteria. When PG was used as sulfate source, Desulfovibrio species dominated microbial communities of marine sediments, while Desulfobacter species were mainly detected using sodium sulfate. Sulfide production was also affected depending on the electron donor used, with the highest production obtained using formate. In contrast, low sulfide production (acetate-containing cultures) was associated with an increase in the population of Firmicutes. These results suggested that marine Desulfovibrio species, to be further isolated, are potential candidates for bioremediation of PG by immobilizing metals and metalloids thanks to sulfide production by these SRB.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 18%
Researcher 8 15%
Student > Master 4 7%
Professor > Associate Professor 3 5%
Other 2 4%
Other 12 22%
Unknown 16 29%
Readers by discipline Count As %
Environmental Science 10 18%
Agricultural and Biological Sciences 10 18%
Biochemistry, Genetics and Molecular Biology 8 15%
Immunology and Microbiology 2 4%
Chemistry 2 4%
Other 7 13%
Unknown 16 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2018.
All research outputs
#15,707,852
of 24,885,505 outputs
Outputs from Frontiers in Microbiology
#14,208
of 28,434 outputs
Outputs of similar age
#183,005
of 322,824 outputs
Outputs of similar age from Frontiers in Microbiology
#313
of 520 outputs
Altmetric has tracked 24,885,505 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 28,434 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,824 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 520 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.