↓ Skip to main content

Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum

Overview of attention for article published in Frontiers in Microbiology, August 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum
Published in
Frontiers in Microbiology, August 2017
DOI 10.3389/fmicb.2017.01601
Pubmed ID
Authors

Matthias Ruwe, Jörn Kalinowski, Marcus Persicke

Abstract

The hyperphosphorylated guanosine derivatives ppGpp and pppGpp represent global regulators of the bacterial stress response, as they act as central elements of the stringent response system. Although it was assumed that both, (p)ppGpp synthesis and hydrolysis, are catalyzed by one bifunctional RSH-protein in the actinobacterial model organism Corynebacterium glutamicum ATCC 13032, two putative short alarmone synthetases (SASs) were identified by bioinformatic analyses. The predicted sequences of both enzymes, designated as RelP(*)Cg and RelSCg, exhibit high similarities to the conserved (p)ppGpp synthetase catalytic domain. In the context of sequence analysis, significant differences were found between the RelP variants of different C. glutamicum isolates. In contrast to the bifunctional RelA/SpoT homolog (RSH) protein RelCg, whose gene deletion results in a reduced growth rate, no change in growth characteristics were observed for deletion mutants of the putative SAS proteins under standard growth conditions. The growth deficit of the Δrel strain could be restored by the additional deletion of the gene encoding RelSCg, which clearly indicates a functional relationship between both enzymes. The predicted pyrophosphokinase activity of RelSCg was demonstrated by means of genetic complementation of an Escherichia coli ΔrelAΔspoT strain. For the expression of RelP(*)Cg , as well as the slightly differing variant RelPCg from C. glutamicum AS1.542, no complementation was observed, concluding that both RelP versions possess no significant pyrophosphokinase activity in vivo. The results were confirmed by in vitro characterization of the corresponding proteins. In the course of this investigation, the additional conversion of GMP to pGpp was determined for the enzyme RelSCg. Since the SAS species analyzed extend both the network of stringent response related enzymes and the number of substances involved, the study of this class of enzymes is an important component in understanding the bacterial stress response. In addition to the comprehension of important biological processes, such as growth rate regulation and the survival of pathogenic species in the host organism, SAS enzymes can be used to produce novel hyperphosphorylated nucleotide species, such as pGpp.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 23%
Student > Master 7 23%
Researcher 3 10%
Other 2 6%
Professor 2 6%
Other 4 13%
Unknown 6 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 48%
Agricultural and Biological Sciences 4 13%
Engineering 4 13%
Immunology and Microbiology 3 10%
Mathematics 1 3%
Other 0 0%
Unknown 4 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 August 2017.
All research outputs
#20,809,834
of 26,437,155 outputs
Outputs from Frontiers in Microbiology
#20,021
of 30,336 outputs
Outputs of similar age
#243,439
of 331,291 outputs
Outputs of similar age from Frontiers in Microbiology
#379
of 520 outputs
Altmetric has tracked 26,437,155 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 30,336 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,291 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 520 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.