↓ Skip to main content

Global Screening of Salmonella enterica Serovar Typhimurium Genes for Desiccation Survival

Overview of attention for article published in Frontiers in Microbiology, September 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

wikipedia
2 Wikipedia pages

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
91 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Global Screening of Salmonella enterica Serovar Typhimurium Genes for Desiccation Survival
Published in
Frontiers in Microbiology, September 2017
DOI 10.3389/fmicb.2017.01723
Pubmed ID
Authors

Rabindra K. Mandal, Young M. Kwon

Abstract

Salmonella spp., one of the most common foodborne bacterial pathogens, has the ability to survive under desiccation conditions in foods and food processing facilities for years. This raises the concerns of Salmonella infection in humans associated with low water activity foods. Salmonella responds to desiccation stress via complex pathways involving immediate physiological actions as well as coordinated genetic responses. However, the exact mechanisms of Salmonella to resist desiccation stress remain to be fully elucidated. In this study, we screened a genome-saturating transposon (Tn5) library of Salmonella Typhimurium (S. Typhimurium) 14028s under the in vitro desiccation stress using transposon sequencing (Tn-seq). We identified 61 genes and 6 intergenic regions required to overcome desiccation stress. Salmonella desiccation resistance genes were mostly related to energy production and conversion; cell wall/membrane/envelope biogenesis; inorganic ion transport and metabolism; regulation of biological process; DNA metabolic process; ABC transporters; and two component system. More than 20% of the Salmonella desiccation resistance genes encode either putative or hypothetical proteins. Phenotypic evaluation of 12 single gene knockout mutants showed 3 mutants (atpH, atpG, and corA) had significantly (p < 0.02) reduced survival as compared to the wild type during desiccation survival. Thus, our study provided new insights into the molecular mechanisms utilized by Salmonella for survival against desiccation stress. The findings might be further exploited to develop effective control strategies against Salmonella contamination in low water activity foods and food processing facilities.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 91 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 91 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 20%
Student > Master 14 15%
Researcher 10 11%
Student > Doctoral Student 7 8%
Student > Bachelor 7 8%
Other 12 13%
Unknown 23 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 26%
Biochemistry, Genetics and Molecular Biology 16 18%
Immunology and Microbiology 10 11%
Veterinary Science and Veterinary Medicine 5 5%
Chemical Engineering 1 1%
Other 7 8%
Unknown 28 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 April 2020.
All research outputs
#7,540,398
of 23,003,906 outputs
Outputs from Frontiers in Microbiology
#8,252
of 25,096 outputs
Outputs of similar age
#120,122
of 316,069 outputs
Outputs of similar age from Frontiers in Microbiology
#245
of 519 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,096 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,069 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 519 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.