↓ Skip to main content

Modulation of Microtubule Dynamics Affects Brucella abortus Intracellular Survival, Pathogen-Containing Vacuole Maturation, and Pro-inflammatory Cytokine Production in Infected Macrophages

Overview of attention for article published in Frontiers in Microbiology, November 2017
Altmetric Badge

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modulation of Microtubule Dynamics Affects Brucella abortus Intracellular Survival, Pathogen-Containing Vacuole Maturation, and Pro-inflammatory Cytokine Production in Infected Macrophages
Published in
Frontiers in Microbiology, November 2017
DOI 10.3389/fmicb.2017.02217
Pubmed ID
Authors

Juliana Alves-Silva, Isabela P. Tavares, Erika S. Guimarães, Miriam M. Costa Franco, Barbara C. Figueiredo, João T. Marques, Gary Splitter, Sergio C. Oliveira

Abstract

The microtubule (MT) cytoskeleton regulates several cellular processes related to the immune system. For instance, an intricate intracellular transport mediated by MTs is responsible for the proper localization of vesicular receptors of innate immunity and its adaptor proteins. In the present study, we used nocodazole to induce MTs depolymerization and paclitaxel or recombinant (r) TIR (Toll/interleukin-1 receptor) domain containing protein (TcpB) to induce MT stabilization in bone marrow-derived macrophages infected with Brucella abortus. Following treatment of the cells, we evaluated their effects on pathogen intracellular replication and survival, and in pro-inflammatory cytokine production. First, we observed that intracellular trafficking and maturation of Brucella-containing vesicles (BCVs) is affected by partial destabilization or stabilization of the MTs network. A typical marker of early BCVs, LAMP-1, is retained in late BCVs even 24 h after infection in the presence of low doses of nocodazole or paclitaxel and in the presence of different amounts of rTcpB. Second, microscopy and colony forming unit analysis revealed that bacterial load was increased in infected macrophages treated with lower doses of nocodazole or paclitaxel and with rTcpB compared to untreated cells. Third, innate immune responses were also affected by disturbing MT dynamics. MT depolymerization by nocodazole reduced IL-12 production in infected macrophages. Conversely, rTcpB-treated cells augmented IL-12 and IL-1β secretion in infected cells. In summary, these findings demonstrate that modulation of MTs affects several crucial steps of B. abortus pathogenesis, including BCV maturation, intracellular survival and IL-12 secretion in infected macrophages.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 36%
Researcher 3 14%
Student > Bachelor 2 9%
Student > Master 2 9%
Professor 1 5%
Other 3 14%
Unknown 3 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 23%
Immunology and Microbiology 4 18%
Agricultural and Biological Sciences 4 18%
Veterinary Science and Veterinary Medicine 2 9%
Nursing and Health Professions 1 5%
Other 2 9%
Unknown 4 18%