↓ Skip to main content

Mycobacterium smegmatis PhoU Proteins Have Overlapping Functions in Phosphate Signaling and Are Essential

Overview of attention for article published in Frontiers in Microbiology, December 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mycobacterium smegmatis PhoU Proteins Have Overlapping Functions in Phosphate Signaling and Are Essential
Published in
Frontiers in Microbiology, December 2017
DOI 10.3389/fmicb.2017.02523
Pubmed ID
Authors

Alyssa M. Brokaw, Benjamin J. Eide, Michael Muradian, Joshua M. Boster, Anna D. Tischler

Abstract

Many bacteria regulate gene expression in response to phosphate availability using a two-component signal transduction system, the activity of which is controlled by interaction with the Pst phosphate specific transporter and a cytoplasmic protein PhoU. Mycobacterium tuberculosis, the causative agent of tuberculosis, requires its phosphate sensing signal transduction system for virulence and antibiotic tolerance, but the molecular mechanisms of phosphate sensing remain poorly characterized. M. smegmatis serves as a model for studying mycobacterial pathogens including M. tuberculosis. M. smegmatis encodes two proteins with similarity to PhoU, but it was unknown if both proteins participated in signal transduction with the phosphate-responsive SenX3-RegX3 two-component system. We constructed phoU single and double deletion mutants and tested expression of genes in the RegX3 regulon. Only the ΔphoU1ΔphoU2 mutant exhibited constitutive activation of all the RegX3-regulated genes examined, suggesting that M. smegmatis PhoU1 and PhoU2 have overlapping functions in inhibiting activity of the SenX3-RegX3 two-component system when phosphate is readily available. The ΔphoU1ΔphoU2 mutant also exhibited decreased tolerance to several anti-tubercular drugs. However, a complex plasmid swapping strategy was required to generate the ΔphoU1ΔphoU2 mutant, suggesting that either phoU1 or phoU2 is essential for in vitro growth of M. smegmatis. Using whole-genome sequencing, we demonstrated that all five of the ΔphoU1ΔphoU2 mutants we isolated had independent suppressor mutations predicted to disrupt the function of the Pst phosphate transporter, suggesting that in the absence of the PhoU proteins phosphate uptake by the Pst system is toxic. Collectively, our data demonstrate that the two M. smegmatis PhoU orthologs have overlapping functions in both controlling SenX3-RegX3 activity in response to phosphate availability and regulating phosphate transport by the Pst system. Our results suggest that M. smegmatis can serve as a tractable model for further characterization of the molecular mechanism of phosphate sensing in mycobacteria and to screen for compounds that would interfere with signal transduction and thereby increase the efficacy of existing anti-tubercular antibiotics.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 5 14%
Student > Ph. D. Student 5 14%
Other 4 11%
Student > Master 4 11%
Researcher 3 8%
Other 5 14%
Unknown 10 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 25%
Immunology and Microbiology 5 14%
Agricultural and Biological Sciences 3 8%
Computer Science 2 6%
Unspecified 1 3%
Other 4 11%
Unknown 12 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 January 2018.
All research outputs
#18,583,054
of 23,016,919 outputs
Outputs from Frontiers in Microbiology
#19,565
of 25,134 outputs
Outputs of similar age
#328,279
of 439,957 outputs
Outputs of similar age from Frontiers in Microbiology
#417
of 516 outputs
Altmetric has tracked 23,016,919 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,134 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,957 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 516 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.