↓ Skip to main content

Rac1/WAVE2 and Cdc42/N-WASP Participation in Actin-Dependent Host Cell Invasion by Extracellular Amastigotes of Trypanosoma cruzi

Overview of attention for article published in Frontiers in Microbiology, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rac1/WAVE2 and Cdc42/N-WASP Participation in Actin-Dependent Host Cell Invasion by Extracellular Amastigotes of Trypanosoma cruzi
Published in
Frontiers in Microbiology, February 2018
DOI 10.3389/fmicb.2018.00360
Pubmed ID
Authors

Alexis Bonfim-Melo, Éden R. Ferreira, Renato A. Mortara

Abstract

This study evaluated the participation of host cell Rho-family GTPases and their effector proteins in the actin-dependent invasion by Trypanosoma cruzi extracellular amastigotes (EAs). We observed that all proteins were recruited and colocalized with actin at EA invasion sites in live or fixed cells. EA internalization was inhibited in cells depleted in Rac1, N-WASP, and WAVE2. Time-lapse experiments with Rac1, N-WASP and WAVE2 depleted cells revealed that EA internalization kinetics is delayed even though no differences were observed in the proportion of EA-induced actin recruitment in these groups. Overexpression of constitutively active constructs of Rac1 and RhoA altered the morphology of actin recruitments to EA invasion sites. Additionally, EA internalization was increased in cells overexpressing CA-Rac1 but inhibited in cells overexpressing CA-RhoA. WT-Cdc42 expression increased EA internalization, but curiously, CA-Cdc42 inhibited it. Altogether, these results corroborate the hypothesis of EA internalization in non-phagocytic cells by a phagocytosis-like mechanism and present Rac1 as the key Rho-family GTPase in this process.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 26%
Student > Master 6 18%
Student > Doctoral Student 3 9%
Student > Bachelor 2 6%
Researcher 2 6%
Other 5 15%
Unknown 7 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 35%
Immunology and Microbiology 4 12%
Agricultural and Biological Sciences 4 12%
Unspecified 1 3%
Nursing and Health Professions 1 3%
Other 2 6%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 March 2020.
All research outputs
#13,582,166
of 23,025,074 outputs
Outputs from Frontiers in Microbiology
#10,650
of 25,149 outputs
Outputs of similar age
#171,580
of 330,534 outputs
Outputs of similar age from Frontiers in Microbiology
#319
of 598 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,149 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,534 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 598 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.