↓ Skip to main content

Temperature-Dependent Effects of Cutaneous Bacteria on a Frog’s Tolerance of Fungal Infection

Overview of attention for article published in Frontiers in Microbiology, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

blogs
1 blog
twitter
8 X users
facebook
2 Facebook pages

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Temperature-Dependent Effects of Cutaneous Bacteria on a Frog’s Tolerance of Fungal Infection
Published in
Frontiers in Microbiology, March 2018
DOI 10.3389/fmicb.2018.00410
Pubmed ID
Authors

Matthew J. Robak, Corinne L. Richards-Zawacki

Abstract

Defense against pathogens is one of many benefits that bacteria provide to animal hosts. A clearer understanding of how changes in the environment affect the interactions between animals and their microbial benefactors is needed in order to predict the impact and dynamics of emerging animal diseases. Due to its dramatic effects on the physiology of animals and their pathogens, temperature may be a key variable modulating the level of protection that beneficial bacteria provide to their animal hosts. Here we investigate how temperature and the makeup of the skin microbial community affect the susceptibility of amphibian hosts to infection by Batrachochytrium dendrobatidis (Bd), one of two fungal pathogens known to cause the disease chytridiomycosis. To do this, we manipulated the skin bacterial communities of susceptible hosts, northern cricket frogs (Acris crepitans), prior to exposing these animals to Bd under two different ecologically relevant temperatures. Our manipulations included one treatment where antibiotics were used to reduce the skin bacterial community, one where the bacterial community was augmented with the antifungal bacterium, Stenotrophomonas maltophilia, and one in which the frog's skin bacterial community was left intact. We predicted that frogs with reduced skin bacterial communities would be more susceptible (i.e., less resistant to and/or tolerant of Bd infection), and frogs with skin bacterial communities augmented with the known antifungal bacterium would be less susceptible to Bd infection and chytridiomycosis. However, we also predicted that this interaction would be temperature dependent. We found a strong effect of temperature but not of skin microbial treatment on the probability and intensity of infection in Bd-exposed frogs. Whether temperature affected survival; however, it differed among our skin microbial treatment groups, with animals having more S. maltophilia on their skin surviving longer at 14 but not at 26°C. Our results suggest that temperature was the predominant factor influencing Bd's ability to colonize the host (i.e., resistance) but that the composition of the cutaneous bacterial community was important in modulating the host's ability to survive (i.e., tolerate) a heavy Bd infection.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 78 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 23%
Student > Bachelor 13 17%
Student > Master 13 17%
Researcher 8 10%
Student > Doctoral Student 5 6%
Other 8 10%
Unknown 13 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 31 40%
Environmental Science 7 9%
Biochemistry, Genetics and Molecular Biology 7 9%
Immunology and Microbiology 5 6%
Veterinary Science and Veterinary Medicine 4 5%
Other 5 6%
Unknown 19 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 January 2019.
All research outputs
#2,366,104
of 23,026,672 outputs
Outputs from Frontiers in Microbiology
#1,888
of 25,153 outputs
Outputs of similar age
#53,087
of 332,611 outputs
Outputs of similar age from Frontiers in Microbiology
#63
of 591 outputs
Altmetric has tracked 23,026,672 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 25,153 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,611 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 591 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.