↓ Skip to main content

Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology

Overview of attention for article published in Frontiers in Microbiology, March 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
195 Dimensions

Readers on

mendeley
359 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology
Published in
Frontiers in Microbiology, March 2018
DOI 10.3389/fmicb.2018.00437
Pubmed ID
Authors

Sarah Shabayek, Barbara Spellerberg

Abstract

Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of serious neonatal infections. GBS is an opportunistic commensal constituting a part of the intestinal and vaginal physiologic flora and maternal colonization is the principal route of GBS transmission. GBS is a pathobiont that converts from the asymptomatic mucosal carriage state to a major bacterial pathogen causing severe invasive infections. At present, as many as 10 serotypes (Ia, Ib, and II-IX) are recognized. The aim of the current review is to shed new light on the latest epidemiological data and clonal distribution of GBS in addition to discussing the most important colonization determinants at a molecular level. The distribution and predominance of certain serotypes is susceptible to variations and can change over time. With the availability of multilocus sequence typing scheme (MLST) data, it became clear that GBS strains of certain clonal complexes possess a higher potential to cause invasive disease, while other harbor mainly colonizing strains. Colonization and persistence in different host niches is dependent on the adherence capacity of GBS to host cells and tissues. Bacterial biofilms represent well-known virulence factors with a vital role in persistence and chronic infections. In addition, GBS colonization, persistence, translocation, and invasion of host barriers are largely dependent on their adherence abilities to host cells and extracellular matrix proteins (ECM). Major adhesins mediating GBS interaction with host cells include the fibrinogen-binding proteins (Fbs), the laminin-binding protein (Lmb), the group B streptococcal C5a peptidase (ScpB), the streptococcal fibronectin binding protein A (SfbA), the GBS immunogenic bacterial adhesin (BibA), and the hypervirulent adhesin (HvgA). These adhesins facilitate persistent and intimate contacts between the bacterial cell and the host, while global virulence regulators play a major role in the transition to invasive infections. This review combines for first time epidemiological data with data on adherence and colonization for GBS. Investigating the epidemiology along with understanding the determinants of mucosal colonization and the development of invasive disease at a molecular level is therefore important for the development of strategies to prevent invasive GBS disease worldwide.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 359 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 359 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 53 15%
Student > Bachelor 47 13%
Researcher 30 8%
Student > Ph. D. Student 27 8%
Student > Doctoral Student 25 7%
Other 47 13%
Unknown 130 36%
Readers by discipline Count As %
Immunology and Microbiology 66 18%
Biochemistry, Genetics and Molecular Biology 43 12%
Medicine and Dentistry 39 11%
Agricultural and Biological Sciences 15 4%
Nursing and Health Professions 12 3%
Other 41 11%
Unknown 143 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2018.
All research outputs
#20,472,403
of 23,031,582 outputs
Outputs from Frontiers in Microbiology
#22,736
of 25,155 outputs
Outputs of similar age
#294,863
of 333,770 outputs
Outputs of similar age from Frontiers in Microbiology
#547
of 602 outputs
Altmetric has tracked 23,031,582 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,155 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,770 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 602 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.