↓ Skip to main content

High Diversity of Myocyanophage in Various Aquatic Environments Revealed by High-Throughput Sequencing of Major Capsid Protein Gene With a New Set of Primers

Overview of attention for article published in Frontiers in Microbiology, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High Diversity of Myocyanophage in Various Aquatic Environments Revealed by High-Throughput Sequencing of Major Capsid Protein Gene With a New Set of Primers
Published in
Frontiers in Microbiology, May 2018
DOI 10.3389/fmicb.2018.00887
Pubmed ID
Authors

Weiguo Hou, Shang Wang, Brandon R. Briggs, Gaoyuan Li, Wei Xie, Hailiang Dong

Abstract

Myocyanophages, a group of viruses infecting cyanobacteria, are abundant and play important roles in elemental cycling. Here we investigated the particle-associated viral communities retained on 0.2 μm filters and in sediment samples (representing ancient cyanophage communities) from four ocean and three lake locations, using high-throughput sequencing and a newly designed primer pair targeting a gene fragment (∼145-bp in length) encoding the cyanophage gp23 major capsid protein (MCP). Diverse viral communities were detected in all samples. The fragments of 142-, 145-, and 148-bp in length were most abundant in the amplicons, and most sequences (>92%) belonged to cyanophages. Additionally, different sequencing depths resulted in different diversity estimates of the viral community. Operational taxonomic units obtained from deep sequencing of the MCP gene covered the majority of those obtained from shallow sequencing, suggesting that deep sequencing exhibited a more complete picture of cyanophage community than shallow sequencing. Our results also revealed a wide geographic distribution of marine myocyanophages, i.e., higher dissimilarities of the myocyanophage communities corresponded with the larger distances between the sampling sites. Collectively, this study suggests that the newly designed primer pair can be effectively used to study the community and diversity of myocyanophage from different environments, and the high-throughput sequencing represents a good method to understand viral diversity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Professor 2 14%
Researcher 2 14%
Student > Ph. D. Student 2 14%
Lecturer 1 7%
Student > Doctoral Student 1 7%
Other 2 14%
Unknown 4 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 36%
Biochemistry, Genetics and Molecular Biology 1 7%
Environmental Science 1 7%
Unknown 7 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 May 2018.
All research outputs
#13,358,757
of 23,047,237 outputs
Outputs from Frontiers in Microbiology
#9,992
of 25,187 outputs
Outputs of similar age
#163,855
of 326,458 outputs
Outputs of similar age from Frontiers in Microbiology
#285
of 610 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,187 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,458 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 610 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.