↓ Skip to main content

Saccharomyces cerevisiae Differential Functionalization of Presumed ScALT1 and ScALT2 Alanine Transaminases Has Been Driven by Diversification of Pyridoxal Phosphate Interactions

Overview of attention for article published in Frontiers in Microbiology, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Saccharomyces cerevisiae Differential Functionalization of Presumed ScALT1 and ScALT2 Alanine Transaminases Has Been Driven by Diversification of Pyridoxal Phosphate Interactions
Published in
Frontiers in Microbiology, May 2018
DOI 10.3389/fmicb.2018.00944
Pubmed ID
Authors

Erendira Rojas-Ortega, Beatriz Aguirre-López, Horacio Reyes-Vivas, Martín González-Andrade, Jose C. Campero-Basaldúa, Juan P. Pardo, Alicia González

Abstract

Saccharomyces cerevisiae arose from an interspecies hybridization (allopolyploidiza-tion), followed by Whole Genome Duplication. Diversification analysis of ScAlt1/ScAlt2 indicated that while ScAlt1 is an alanine transaminase, ScAlt2 lost this activity, constituting an example in which one of the members of the gene pair lacks the apparent ancestral physiological role. This paper analyzes structural organization and pyridoxal phosphate (PLP) binding properties of ScAlt1 and ScAlt2 indicating functional diversification could have determined loss of ScAlt2 alanine transaminase activity and thus its role in alanine metabolism. It was found that ScAlt1 and ScAlt2 are dimeric enzymes harboring 67% identity and intact conservation of the catalytic residues, with very similar structures. However, tertiary structure analysis indicated that ScAlt2 has a more open conformation than that of ScAlt1 so that under physiological conditions, while PLP interaction with ScAlt1 allows the formation of two tautomeric PLP isomers (enolimine and ketoenamine) ScAlt2 preferentially forms the ketoenamine PLP tautomer, indicating a modified polarity of the active sites which affect the interaction of PLP with these proteins, that could result in lack of alanine transaminase activity in ScAlt2. The fact that ScAlt2 forms a catalytically active Schiff base with PLP and its position in an independent clade in "sensu strictu" yeasts suggests this protein has a yet undiscovered physiological function.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 22%
Researcher 4 17%
Student > Doctoral Student 2 9%
Student > Bachelor 1 4%
Student > Ph. D. Student 1 4%
Other 3 13%
Unknown 7 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 52%
Agricultural and Biological Sciences 3 13%
Chemical Engineering 1 4%
Unknown 7 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 June 2018.
All research outputs
#20,520,426
of 23,088,369 outputs
Outputs from Frontiers in Microbiology
#22,836
of 25,250 outputs
Outputs of similar age
#287,421
of 326,930 outputs
Outputs of similar age from Frontiers in Microbiology
#524
of 606 outputs
Altmetric has tracked 23,088,369 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,250 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,930 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 606 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.