↓ Skip to main content

Interactive Effects of Nutrients and Bradyrhizobium japonicum on the Growth and Root Architecture of Soybean (Glycine max L.)

Overview of attention for article published in Frontiers in Microbiology, May 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interactive Effects of Nutrients and Bradyrhizobium japonicum on the Growth and Root Architecture of Soybean (Glycine max L.)
Published in
Frontiers in Microbiology, May 2018
DOI 10.3389/fmicb.2018.01000
Pubmed ID
Authors

Dilfuza Egamberdieva, Dilfuza Jabborova, Stephan J. Wirth, Pravej Alam, Mohammed N. Alyemeni, Parvaiz Ahmad

Abstract

Understanding the symbiotic performance of rhizobia and responses of plant root systems to mineral nutrient supply will facilitate the development of strategies to enhance effective rhizobia-legume symbioses. Interactive effect of nitrogen (N), phosphorus (P), and magnesium (Mg) on the symbiotic performance of soybean (Glycine max L.) with Bradyrhizobium japonicum, nodulation, root architecture, and the N concentration in plant tissue under hydroponic conditions were studied. Plant growth was significantly higher under a high N supply combined with Mg (HNHMg) than in combination with P (HNHP), which was attributed to the interaction between N and Mg ions. The plants grown at a low N concentration combined with either high or low P or Mg (LNHP, LNHMg, LNLP, and LNLMg) showed a higher nodule dry weight compared to those grown under a high N supply. We observed that the N content in the roots and shoots of soybean plants was significantly lower under LNHP or LNLP, but it was higher under HNHMg or LNHMg, indicating that Mg promotes N acquisition by the plant tissues. Neither root nor shoot growth responded significantly to P availability regardless of the N supply. We observed significant positive relationships between the number of nodules, the N content in plant tissues and the root system architecture of soybean plants grown with a variable supply of Mg combined with N, which highlights the importance of N and Mg availability in the growth medium in regulating root system architecture and nodule formation. The number of rhizobial cells colonizing soybean roots was highest under the HNHMg treatment (6.78 × 104 CFUs/cm of root tip), followed by the HNLMg (4.72 × 104 CFUs/cm of root tip) and LNHMg (4.10 × 104 CFU/cm of root tip) treatments, and lowest under the LNLMg (1.84 × 104 CFUs/cm of root tip) nutrient conditions. The results of this study contribute to new insights for the improvement of the root system and the symbiotic performance of rhizobia inoculated on legumes, stressing the importance of a balanced supply of nutrients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 78 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 15%
Student > Ph. D. Student 10 13%
Student > Bachelor 10 13%
Researcher 8 10%
Student > Doctoral Student 3 4%
Other 10 13%
Unknown 25 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 33 42%
Biochemistry, Genetics and Molecular Biology 6 8%
Environmental Science 3 4%
Unspecified 2 3%
Nursing and Health Professions 1 1%
Other 2 3%
Unknown 31 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2018.
All research outputs
#8,600,528
of 25,537,395 outputs
Outputs from Frontiers in Microbiology
#9,302
of 29,509 outputs
Outputs of similar age
#138,262
of 344,337 outputs
Outputs of similar age from Frontiers in Microbiology
#263
of 633 outputs
Altmetric has tracked 25,537,395 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 29,509 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,337 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 633 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.