↓ Skip to main content

Comparative Genomics of the Herbivore Gut Symbiont Lactobacillus reuteri Reveals Genetic Diversity and Lifestyle Adaptation

Overview of attention for article published in Frontiers in Microbiology, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative Genomics of the Herbivore Gut Symbiont Lactobacillus reuteri Reveals Genetic Diversity and Lifestyle Adaptation
Published in
Frontiers in Microbiology, June 2018
DOI 10.3389/fmicb.2018.01151
Pubmed ID
Authors

Jie Yu, Jie Zhao, Yuqin Song, Jiachao Zhang, Zhongjie Yu, Heping Zhang, Zhihong Sun

Abstract

Lactobacillus reuteri is a catalase-negative, Gram-positive, non-motile, obligately heterofermentative bacterial species that has been used as a model to describe the ecology and evolution of vertebrate gut symbionts. However, the genetic features and evolutionary strategies of L. reuteri from the gastrointestinal tract of herbivores remain unknown. Therefore, 16 L. reuteri strains isolated from goat, sheep, cow, and horse in Inner Mongolia, China were sequenced in this study. A comparative genomic approach was used to assess genetic diversity and gain insight into the distinguishing features related to the different hosts based on 21 published genomic sequences. Genome size, G + C content, and average nucleotide identity values of the L. reuteri strains from different hosts indicated that the strains have broad genetic diversity. The pan-genome of 37 L. reuteri strains contained 8,680 gene families, and the core genome contained 726 gene families. A total of 92,270 nucleotide mutation sites were discovered among 37 L. reuteri strains, and all core genes displayed a Ka/Ks ratio much lower than 1, suggesting strong purifying selective pressure (negative selection). A highly robust maximum likelihood tree based on the core genes shown in the herbivore isolates were divided into three clades; clades A and B contained most of the herbivore isolates and were more closely related to human isolates and vastly distinct from clade C. Some functional genes may be attributable to host-specific of the herbivore, omnivore, and sourdough groups. Moreover, the numbers of genes encoding cell surface proteins and active carbohydrate enzymes were host-specific. This study provides new insight into the adaptation of L. reuteri to the intestinal habitat of herbivores, suggesting that the genomic diversity of L. reuteri from different ecological origins is closely associated with their living environment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 23%
Researcher 7 18%
Student > Doctoral Student 4 10%
Student > Bachelor 2 5%
Other 2 5%
Other 4 10%
Unknown 12 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 35%
Biochemistry, Genetics and Molecular Biology 7 18%
Immunology and Microbiology 2 5%
Chemical Engineering 1 3%
Environmental Science 1 3%
Other 1 3%
Unknown 14 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 June 2018.
All research outputs
#15,536,861
of 23,090,520 outputs
Outputs from Frontiers in Microbiology
#15,426
of 25,257 outputs
Outputs of similar age
#209,839
of 329,882 outputs
Outputs of similar age from Frontiers in Microbiology
#407
of 686 outputs
Altmetric has tracked 23,090,520 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,257 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,882 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 686 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.