↓ Skip to main content

Advance in Research on Mycobacterium tuberculosis FabG4 and Its Inhibitor

Overview of attention for article published in Frontiers in Microbiology, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Advance in Research on Mycobacterium tuberculosis FabG4 and Its Inhibitor
Published in
Frontiers in Microbiology, June 2018
DOI 10.3389/fmicb.2018.01184
Pubmed ID
Authors

Debajyoti Dutta

Abstract

Increasing evidence from recent reports of drug-resistant mycobacterial strains poses a challenge worldwide. Drug-resistant strains often undergo mutations, adopt alternative pathways, and express drug efflux pumps to reduce or eliminate drug doses. Besides these intrinsic resistance mechanisms, bacteria can evade drug doses by forming biofilms. Biofilms are the concerted growth of adherent microorganisms, which can also be formed at the air-water interface. The growth is supported by the extracellular polymer matrix which is self-produced by the microorganisms. Reduced metabolic activity in a nutrient-deficient environment in the biofilm may cause the microorganisms to take alternative pathways that can make the microorganisms recalcitrant to the drug doses. Recent works have shown that Mycobacterium tuberculosis expresses several proteins during its growth in biofilm, those when deleted, did not show any effect on mycobacterial growth in normal nutrient-sufficient conditions. Studying these unconventional proteins in mycobacterial biofilms is therefore of utmost importance. In this article, I will discuss one such mycobacterial biofilm-related protein FabG4 that is recently shown to be important for mycobacterial survival in the presence of antibiotic stressors and limited nutrient condition. In an attempt to find more effective FabG4 inhibitors and its importance in biofilm forming M. tuberculosis, present knowledge about FabG4 and its known inhibitors are discussed. Based on the existing data, a putative role of FabG4 is also suggested.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 27 48%
Student > Master 4 7%
Student > Ph. D. Student 3 5%
Student > Doctoral Student 2 4%
Student > Postgraduate 2 4%
Other 5 9%
Unknown 13 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 30%
Neuroscience 6 11%
Agricultural and Biological Sciences 5 9%
Arts and Humanities 3 5%
Immunology and Microbiology 3 5%
Other 8 14%
Unknown 14 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 June 2018.
All research outputs
#13,362,256
of 23,055,429 outputs
Outputs from Frontiers in Microbiology
#9,987
of 25,205 outputs
Outputs of similar age
#164,675
of 329,265 outputs
Outputs of similar age from Frontiers in Microbiology
#308
of 688 outputs
Altmetric has tracked 23,055,429 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,205 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,265 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 688 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.