↓ Skip to main content

Fullerenes Influence the Toxicity of Organic Micro-Contaminants to River Biofilms

Overview of attention for article published in Frontiers in Microbiology, July 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fullerenes Influence the Toxicity of Organic Micro-Contaminants to River Biofilms
Published in
Frontiers in Microbiology, July 2018
DOI 10.3389/fmicb.2018.01426
Pubmed ID
Authors

Anna Freixa, Vicenç Acuña, Marina Gutierrez, Josep Sanchís, Lúcia H. M. L. M. Santos, Sara Rodriguez-Mozaz, Marinella Farré, Damià Barceló, Sergi Sabater

Abstract

Organic micro-contaminants (OMCs) enter in freshwaters and interact with other contaminants such as carbon nanoparticles, becoming a problem of unknown consequences for river ecosystems. Carbon nanoparticles (as fullerenes C60) are good adsorbents of organic contaminants and their interaction can potentially affect their toxicity to river biofilms. We tested the C60 interactions with selected OMCs and their effects on river biofilms in different short-term experiments. In these, river biofilms were exposed to C60 and three OMCs (triclosan, diuron, or venlafaxine) and their respective mixtures with fullerenes (C60 + each OMC). The effects were evaluated on structural, molecular, and functional descriptors of river biofilms. Our results showed that C60 did not cause toxic effects in river biofilms, whereas diuron and triclosan significantly affected the heterotrophic and phototrophic components of biofilms and venlafaxine affected only the phototrophic component. The joint exposure of C60 with venlafaxine was not producing differences with respect to the former response of the toxicant, but the overall response was antagonistic (i.e., decreased toxicity) with diuron, and synergistic (i.e., increased toxicity) with triclosan. We suggest that differences in the toxic responses could be related to the respective molecular structure of each OMC, to the concentration proportion between OMC and C60, and to the possible competition between C60 pollutants on blocking the receptors of the biological cell membranes. We conclude that the presence of C60 at low concentrations modified the toxicity of OMC to river biofilms. These interactions should therefore be considered when predicting toxicity of OMC in river ecosystems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 20%
Researcher 7 14%
Student > Bachelor 6 12%
Student > Master 6 12%
Professor 6 12%
Other 6 12%
Unknown 9 18%
Readers by discipline Count As %
Environmental Science 20 40%
Agricultural and Biological Sciences 6 12%
Biochemistry, Genetics and Molecular Biology 3 6%
Materials Science 2 4%
Chemical Engineering 1 2%
Other 2 4%
Unknown 16 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 July 2018.
All research outputs
#18,641,800
of 23,094,276 outputs
Outputs from Frontiers in Microbiology
#19,659
of 25,263 outputs
Outputs of similar age
#253,189
of 327,912 outputs
Outputs of similar age from Frontiers in Microbiology
#535
of 721 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,263 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,912 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 721 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.