↓ Skip to main content

Modeling for Predicting the Time to Detection of Staphylococcal Enterotoxin A in Cooked Chicken Product

Overview of attention for article published in Frontiers in Microbiology, July 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modeling for Predicting the Time to Detection of Staphylococcal Enterotoxin A in Cooked Chicken Product
Published in
Frontiers in Microbiology, July 2018
DOI 10.3389/fmicb.2018.01536
Pubmed ID
Authors

Jieyun Hu, Lu Lin, Min Chen, Weiling Yan

Abstract

Staphylococcal enterotoxins (SEs) produced by Staphylococcus aureus (S. aureus) are the cause of Saphylococcal food poisoning (SFP) outbreaks. Thus, estimation of the time to detection (TTD) of SEs, that is, the time required to reach the SEs detection limit, is essential for food preservation and quantitative risk assessment. This study was conducted to explore an appropriate method to predict the TTD of SEs in cooked chicken product under variable environmental conditions. An S. aureus strain that produces staphylococcal enterotoxin A (SEA) was inoculated into cooked chicken meat. Initial inoculating concentrations (approximately 102, 103, 104 CFU/g) of S. aureus and incubation temperatures (15 ± 1, 22 ± 1, 29 ± 1, and 36 ± 1°C) were chosen as environmental variables. The counting of S. aureus colonies and the detection of SEA were performed every 3 or 6 h during the incubation. The TTD of SEA was considered a response of S. aureus to environmental variables. Linear polynomial regression was used to model the effects of environmental variables on the TTD of SEA. Result showed that the correlation coefficient (R2) of the regressed equation is higher than 0.98, which means the obtained equation was reliable. Moreover, the minimum concentration of S. aureus for producing a detectable amount of SEA under various environmental conditions was approximately 6.32 log CFU/g, which was considered the threshold for S. aureus to produce SEA. Hence, the TTD of SEA could be obtained by calculating the time required to reach the threshold by using an established S. aureus growth predictive model. Both established methods were validated through internal and external validation. The results of graphical comparison, RMSE, SEP, A f , and B f showed that the accuracy of both methods were acceptable, and linear polynomial regression method showed more accurately.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 15%
Student > Ph. D. Student 2 10%
Professor 2 10%
Unspecified 1 5%
Other 1 5%
Other 2 10%
Unknown 9 45%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 25%
Veterinary Science and Veterinary Medicine 2 10%
Chemical Engineering 1 5%
Environmental Science 1 5%
Unspecified 1 5%
Other 0 0%
Unknown 10 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 July 2018.
All research outputs
#17,982,872
of 23,096,849 outputs
Outputs from Frontiers in Microbiology
#17,507
of 25,264 outputs
Outputs of similar age
#236,171
of 327,048 outputs
Outputs of similar age from Frontiers in Microbiology
#505
of 749 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,264 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,048 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 749 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.