↓ Skip to main content

An Uncharacterized Major Facilitator Superfamily Transporter From Planococcus maritimus Exhibits Dual Functions as a Na+(Li+, K+)/H+ Antiporter and a Multidrug Efflux Pump

Overview of attention for article published in Frontiers in Microbiology, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Uncharacterized Major Facilitator Superfamily Transporter From Planococcus maritimus Exhibits Dual Functions as a Na+(Li+, K+)/H+ Antiporter and a Multidrug Efflux Pump
Published in
Frontiers in Microbiology, July 2018
DOI 10.3389/fmicb.2018.01601
Pubmed ID
Authors

Heba Abdel-Motaal, Lin Meng, Zhenglai Zhang, Amro H. Abdelazez, Li Shao, Tong Xu, Fankui Meng, Shaima Abozaed, Rui Zhang, Juquan Jiang

Abstract

Within major facilitator superfamily (MFS), up to 27 unknown major facilitator families and many members of 60 well-characterized families have been functionally unknown as yet, due to their sharing no or significantly low sequence identity with characterized MFS members. Here we present the first report on the characterization of one functionally unknown MFS transporter designated MdrP with the accession version No. ANU18183.1 from the slight halophile Planococcus maritimus DS 17275T. During the screening of Na+/H+ antiporter genes, we found at first that MdrP exhibits Na+(Li+, K+)/H+ antiport activity, and propose that it should represent a novel class of Na+(Li+, K+)/H+ antiporters. However, we speculate that MdrP may possess an additional protein function. The existence of the signature Motif A of drug/H+antiporter (DHA) family members and phylogenetic analysis suggest that MdrP may also function as a drug efflux pump, which was established by minimum inhibitory concentration tests and drug efflux activity assays. Taken together, this novel MFS transporter exhibits dual functions as a Na+(Li+, K+)/H+ antiporter and a multidrug efflux pump, which will be very helpful to not only positively contribute to the function prediction of uncharacterized MFS members especially DHA1 family ones, but also broaden the knowledge of Na+/H+ antiporters.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 21%
Student > Bachelor 4 17%
Student > Doctoral Student 2 8%
Researcher 2 8%
Professor 1 4%
Other 1 4%
Unknown 9 38%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 17%
Agricultural and Biological Sciences 4 17%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Computer Science 1 4%
Immunology and Microbiology 1 4%
Other 2 8%
Unknown 11 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 August 2018.
All research outputs
#14,884,881
of 23,096,849 outputs
Outputs from Frontiers in Microbiology
#13,845
of 25,270 outputs
Outputs of similar age
#195,005
of 326,757 outputs
Outputs of similar age from Frontiers in Microbiology
#428
of 733 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,270 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,757 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 733 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.