↓ Skip to main content

Direct Detection of Rifampin-Resistant Mycobacterium tuberculosis in Respiratory Specimens Using Quantamatrix Multiplexed Assay Platform (QMAP) System: A Multicenter Study in Korea

Overview of attention for article published in Frontiers in Microbiology, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Direct Detection of Rifampin-Resistant Mycobacterium tuberculosis in Respiratory Specimens Using Quantamatrix Multiplexed Assay Platform (QMAP) System: A Multicenter Study in Korea
Published in
Frontiers in Microbiology, August 2018
DOI 10.3389/fmicb.2018.01804
Pubmed ID
Authors

Hye-young Wang, Kwangjin Ahn, Young Uh, Hyeyoung Lee, Seoyong Kim, Yunhee Chang, Chulhun L. Chang, Tae-sun Shim

Abstract

Rapid and accurate detection of rifampin-resistant Mycobacterium tuberculosis (MTB) is of primary importance for infection control and selection of anti-tuberculosis drugs. The aim of this study was to evaluate the usefulness of a newly developed multiplexed, bead-based bioassay (Quantamatrix Multiplexed Assay Platform, QMAP) for the direct detection of rifampin-resistant MTB in respiratory specimens. A total of 400 respiratory specimens collected from patients with clinically suspected tuberculosis or non-tuberculous mycobacteria (NTM) infections were tested with the culture-based conventional Mycobacterium species identification and QMAP system. Among 400 specimens, 154 samples were evaluated using phenotypic anti-tuberculosis drug susceptibility test (DST) and the QMAP system for the detection of rifampin resistance. Detection agreement rate between the culture-based conventional identification and QMAP system for MTB and NTM according to acid-fast bacillus smear positivity was as follows: 97.0% (131/135) and 93.6% (88/94) in 229 smear-positive samples and 69.4% (25/36) and 73.0% (65/89) in 171 smear-negative samples. Based on culture as the gold standard, the overall sensitivity and specificity of the QMAP system for Mycobacterium identification were 87.3 and 97.8%, respectively. The categorical agreement rate between phenotypic DST and QMAP system for rifampin was as follows: complete agreement, 92.9% (143/154); very major error, 0%; and major error, 0.6% (1/154). The overall sensitivity of the QMAP system for the detection of rifampin resistance was 97.1% (34/35). The QMAP system is a useful screening method for the early diagnosis of tuberculosis and selection of anti-tuberculosis drug, as it may detect rifampin-resistant MTB directly from respiratory specimens.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 40%
Student > Doctoral Student 1 10%
Student > Master 1 10%
Unknown 4 40%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 1 10%
Biochemistry, Genetics and Molecular Biology 1 10%
Nursing and Health Professions 1 10%
Agricultural and Biological Sciences 1 10%
Medicine and Dentistry 1 10%
Other 1 10%
Unknown 4 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 September 2018.
All research outputs
#14,424,488
of 23,102,082 outputs
Outputs from Frontiers in Microbiology
#12,613
of 25,280 outputs
Outputs of similar age
#187,379
of 333,264 outputs
Outputs of similar age from Frontiers in Microbiology
#401
of 738 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,280 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,264 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 738 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.