↓ Skip to main content

Inoculation of Sinorhizobium saheli YH1 Leads to Reduced Metal Uptake for Leucaena leucocephala Grown in Mine Tailings and Metal-Polluted Soils

Overview of attention for article published in Frontiers in Microbiology, August 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inoculation of Sinorhizobium saheli YH1 Leads to Reduced Metal Uptake for Leucaena leucocephala Grown in Mine Tailings and Metal-Polluted Soils
Published in
Frontiers in Microbiology, August 2018
DOI 10.3389/fmicb.2018.01853
Pubmed ID
Authors

Xia Kang, Xiumei Yu, Yu Zhang, Yongliang Cui, Weiguo Tu, Qiongyao Wang, Yanmei Li, Lanfang Hu, Yunfu Gu, Ke Zhao, Quanju Xiang, Qiang Chen, Menggen Ma, Likou Zou, Xiaoping Zhang, Jinsan Kang

Abstract

Metalliferous mine tailings have a negative impact on the soil environment near mining areas and render cultivable lands infertile. Phytoremediation involving the synergism of legume and rhizobia provides a useful technique in tackling this issue with cost-effective, environmentally friendly, and easy-to-use features under adverse soil conditions. Leucaena leucocephala has been found to build symbiotic relationships with native rhizobia in the iron-vanadium-titanium oxide (V-Ti magnetite) mine tailing soil. Rhizobia YH1, isolated from the root nodules of L. leucocephala, was classified as Sinorhizobium saheli according to similarity and phylogenetic analyses of 16S rRNA, housekeeping and nitrogen fixation genes. Besides nitrogen fixation, S. saheli YH1 also showed capabilities to produce indole-acetic acid (IAA) (166.77 ± 2.03 mg l-1) and solubilize phosphate (104.41 ± 7.48 mg l-1). Pot culture experiments showed that strain YH1 increased the biomass, plant height and root length of L. leucocephala by 67.2, 39.5 and 27.2% respectively. There was also an average increase in plant N (10.0%), P (112.2%) and K (25.0%) contents compared to inoculation-free control. The inoculation of YH1 not only reduced the uptake of all metals by L. leucocephala in the mine tailings, but also resulted in decreased uptake of Cd by up to 79.9% and Mn by up to 67.6% for plants grown in soils contaminated with Cd/Mn. It was concluded that S. saheli YH1 possessed multiple beneficial effects on L. leucocephala grown in metalliferous soils. Our findings highlight the role of S. saheli YH1 in improving plant health of L. leucocephala by reducing metal uptake by plants grown in heavy metal-polluted soils. We also suggest the idea of using L. leucocephala-S. saheli association for phytoremediation and revegetation of V-Ti mine tailings and soils polluted with Cd or Mn.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 13%
Student > Bachelor 3 13%
Lecturer 2 8%
Student > Doctoral Student 1 4%
Unspecified 1 4%
Other 4 17%
Unknown 10 42%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 25%
Engineering 2 8%
Nursing and Health Professions 2 8%
Unspecified 1 4%
Computer Science 1 4%
Other 1 4%
Unknown 11 46%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2018.
All research outputs
#15,544,609
of 23,102,082 outputs
Outputs from Frontiers in Microbiology
#15,440
of 25,279 outputs
Outputs of similar age
#211,929
of 334,958 outputs
Outputs of similar age from Frontiers in Microbiology
#459
of 710 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,279 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,958 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 710 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.