↓ Skip to main content

Autoprobiotics as an Approach for Restoration of Personalised Microbiota

Overview of attention for article published in Frontiers in Microbiology, September 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Autoprobiotics as an Approach for Restoration of Personalised Microbiota
Published in
Frontiers in Microbiology, September 2018
DOI 10.3389/fmicb.2018.01869
Pubmed ID
Authors

Alexander Suvorov, Alena Karaseva, Marina Kotyleva, Yulia Kondratenko, Nadezhda Lavrenova, Anton Korobeynikov, Petr Kozyrev, Tatiana Kramskaya, Galina Leontieva, Igor Kudryavtsev, Danyang Guo, Alla Lapidus, Elena Ermolenko

Abstract

Human microbiota is a complex consortium of microorganisms involved in the proper functioning of almost every system of the organism. Majority of the human diseases are associated with the development of intestinal dysbiosis. Dysbiotic condition or dysbiosis is a key pathogenic condition causing many severe infectious or non-infectious diseases. Rapid return to the original microbiota in many cases leads to the fast recovery from the disease. However, the optimal way of the treatment of dysbiosis is still under the discussion. Recently we have developed a method of autoprobiotics based on using isolated indigenous bacteria for improving of microbiota condition. The method based on feeding the patients with bacterial products grown from their personal, genetically characterised strains have been successfully tested in clinic on patients with IBS or chronic pneumonia. In present study we tried to evaluate technology employing autoprobiotic bacteria belonging to different species employing the rat model of antibiotic induced dysbiosis. Six experimental groups of animals after taking antibiotics were treated with different variants of autoprobiotics (lactobacillus, bifidobacteria, enterococcus, their mixture, fecal microbiota, or anaerobically grown complex of indigenous microbiota) prepared for each of them before the development of dysbiosis. Judging by the multiple parameters including metagenomics analysis of microbiota, immune status and microbiota content of the animals with dysbiosis relatively to control group, the most pronounced positive changes were provided by autoprobiotics based on enterococci, bifidobacteria or the consortium of indigenous bacteria grown under anaerobic conditions. These groups of autoprobiotics were delivering the most effective restoration of the original microbiota content and significant anti-inflammatory reaction of the immune system.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 21%
Student > Ph. D. Student 5 12%
Student > Master 3 7%
Student > Postgraduate 2 5%
Professor 1 2%
Other 3 7%
Unknown 20 47%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 12%
Medicine and Dentistry 4 9%
Immunology and Microbiology 3 7%
Biochemistry, Genetics and Molecular Biology 3 7%
Engineering 2 5%
Other 5 12%
Unknown 21 49%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2018.
All research outputs
#13,626,177
of 23,498,099 outputs
Outputs from Frontiers in Microbiology
#10,244
of 25,939 outputs
Outputs of similar age
#168,549
of 338,676 outputs
Outputs of similar age from Frontiers in Microbiology
#341
of 697 outputs
Altmetric has tracked 23,498,099 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,939 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 338,676 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 697 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.