↓ Skip to main content

Dual-Edged Character of Quorum Sensing Signaling Molecules in Microbial Extracellular Electron Transfer

Overview of attention for article published in Frontiers in Microbiology, August 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dual-Edged Character of Quorum Sensing Signaling Molecules in Microbial Extracellular Electron Transfer
Published in
Frontiers in Microbiology, August 2018
DOI 10.3389/fmicb.2018.01924
Pubmed ID
Authors

Yang Yang, Huihui Zhou, Xiaoxue Mei, Bingfeng Liu, Defeng Xing

Abstract

Quorum sensing (QS) is a central mechanism for regulating bacterial social networks in biofilm via the production of diffusible signal molecules (autoinducers). In this work, we assess the contribution of QS autoinducers to microbial extracellular electron transfer (EET) by Pseudomonas aeruginosa strain PAO1 and three mutants pure culture-inoculated in microbial electrolysis cells (MECs) and microbial fuel cells (MFCs). MECs inoculated with different P. aeruginosa strains showed a difference in current generation. All MFCs reached a reproducible cycle of current generation, and PQS-deficient pqsA mutant inoculated-MFCs obtained a much higher current generation than pqsL mutant inoculated-MFCs which overproduced PQS. lasIrhlI-inoculated MFCs produced a lower power output than others, as the strain was deficient in rhl and las. Exogenous N-butanoyl-l-homoserine lactone could remedy the electricity production by lasIrhlI mutants to a level similar to wild-type strains while signaling molecules had little effect on wild-type bacteria in MFCs. Meanwhile, experiments with the wild-type and pqsA, pqsL mutants indicated that the overexpression of PQS signaling molecules made no significant contribution to EET. QS signaling molecules therefore have dual-edged effects on microbial EET. These findings will provide favorable suggestions on the regulation of EET, but detailed QS regulatory mechanisms for extracellular electron transfer in pure- and mixed-cultures are yet to be elucidated.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 28%
Student > Doctoral Student 4 10%
Researcher 4 10%
Other 3 8%
Student > Master 3 8%
Other 3 8%
Unknown 12 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 23%
Agricultural and Biological Sciences 5 13%
Environmental Science 3 8%
Medicine and Dentistry 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 5 13%
Unknown 15 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 September 2018.
All research outputs
#17,987,988
of 23,100,534 outputs
Outputs from Frontiers in Microbiology
#17,515
of 25,279 outputs
Outputs of similar age
#239,578
of 333,688 outputs
Outputs of similar age from Frontiers in Microbiology
#503
of 724 outputs
Altmetric has tracked 23,100,534 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,279 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,688 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 724 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.