↓ Skip to main content

Genome-Wide Analysis of Staphylococcus aureus Sequence Type 72 Isolates Provides Insights Into Resistance Against Antimicrobial Agents and Virulence Potential

Overview of attention for article published in Frontiers in Microbiology, January 2021
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-Wide Analysis of Staphylococcus aureus Sequence Type 72 Isolates Provides Insights Into Resistance Against Antimicrobial Agents and Virulence Potential
Published in
Frontiers in Microbiology, January 2021
DOI 10.3389/fmicb.2020.613800
Pubmed ID
Authors

Nayab Batool, Amen Shamim, Akhilesh Kumar Chaurasia, Kyeong Kyu Kim

Abstract

Staphylococcus aureus sequence type 72 (ST72) is a major community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) that has rapidly entered the hospital setting in Korea, causing mild superficial skin wounds to severe bloodstream infections. In this study, we sequenced and analyzed the genomes of one methicillin-resistant human isolate and one methicillin-sensitive human isolate of ST72 from Korea, K07-204 and K07-561, respectively. We used a subtractive genomics approach to compare these two isolates to other 27 ST72 isolates to investigate antimicrobial resistance (AMR) and virulence potential. Furthermore, we validated genotypic differences by phenotypic characteristics analysis. Comparative and subtractive genomics analysis revealed that K07-204 contains methicillin (mecA), ampicillin (blaZ), erythromycin (ermC), aminoglycoside (aadD), and tetracycline (tet38, tetracycline efflux pump) resistance genes while K07-561 has ampicillin (blaZ) and tetracycline (tet38) resistance genes. In addition to antibiotics, K07-204 was reported to show resistance to lysostaphin treatment. K07-204 also has additional virulence genes (adsA, aur, hysA, icaABCDR, lip, lukD, sdrC, and sdrE) compared to K07-561, which may explain the differential virulence potential of these human isolates of ST72. Unexpectedly, the virulence potential of K07-561 was higher in an in vivo wax-worm infection model than that of K07-204, putatively due to the presence of a 20-fold higher staphyloxanthin concentration than K07-204. Comprehensive genomic analysis of these two human isolates, with 27 ST72 isolates, and S. aureus USA300 (ST8) suggested that acquisition of both virulence and antibiotics resistance genes by ST72 isolates might have facilitated their adaptation from a community to a hospital setting where the selective pressure imposed by antibiotics selects for more resistant and virulent isolates. Taken together, the results of the current study provide insight into the genotypic and phenotypic features of various ST72 clones across the globe, delivering more options for developing therapeutics and rapid molecular diagnostic tools to detect resistant bacteria.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 17%
Researcher 3 9%
Student > Master 3 9%
Other 2 6%
Student > Bachelor 1 3%
Other 2 6%
Unknown 18 51%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 11%
Agricultural and Biological Sciences 3 9%
Immunology and Microbiology 3 9%
Nursing and Health Professions 1 3%
Veterinary Science and Veterinary Medicine 1 3%
Other 2 6%
Unknown 21 60%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 February 2021.
All research outputs
#17,340,991
of 25,443,857 outputs
Outputs from Frontiers in Microbiology
#18,114
of 29,374 outputs
Outputs of similar age
#328,742
of 524,069 outputs
Outputs of similar age from Frontiers in Microbiology
#567
of 923 outputs
Altmetric has tracked 25,443,857 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 29,374 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 524,069 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 923 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.