↓ Skip to main content

Fairy “tails”: flexibility and function of intrinsically disordered extensions in the photosynthetic world

Overview of attention for article published in Frontiers in Molecular Biosciences, May 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
f1000
1 research highlight platform

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
74 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fairy “tails”: flexibility and function of intrinsically disordered extensions in the photosynthetic world
Published in
Frontiers in Molecular Biosciences, May 2015
DOI 10.3389/fmolb.2015.00023
Pubmed ID
Authors

Gabriel Thieulin-Pardo, Luisana Avilan, Mila Kojadinovic, Brigitte Gontero

Abstract

Intrinsically Disordered Proteins (IDPs), or protein fragments also called Intrinsically Disordered Regions (IDRs), display high flexibility as the result of their amino acid composition. They can adopt multiple roles. In globular proteins, IDRs are usually found as loops and linkers between secondary structure elements. However, not all disordered fragments are loops: some proteins bear an intrinsically disordered extension at their C- or N-terminus, and this flexibility can affect the protein as a whole. In this review, we focus on the disordered N- and C-terminal extensions of globular proteins from photosynthetic organisms. Using the examples of the A2B2-GAPDH and the α Rubisco activase isoform, we show that intrinsically disordered extensions can help regulate their "host" protein in response to changes in light, thereby participating in photosynthesis regulation. As IDPs are famous for their large number of protein partners, we used the examples of the NAC, bZIP, TCP, and GRAS transcription factor families to illustrate the fact that intrinsically disordered extremities can allow a protein to have an increased number of partners, which directly affects its regulation. Finally, for proteins from the cryptochrome light receptor family, we describe how a new role for the photolyase proteins may emerge by the addition of an intrinsically disordered extension, while still allowing the protein to absorb blue light. This review has highlighted the diverse repercussions of the disordered extension on the regulation and function of their host protein and outlined possible future research avenues.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 74 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 27%
Researcher 13 18%
Student > Bachelor 7 9%
Student > Master 7 9%
Student > Postgraduate 5 7%
Other 9 12%
Unknown 13 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 26 35%
Agricultural and Biological Sciences 20 27%
Chemistry 4 5%
Unspecified 2 3%
Physics and Astronomy 2 3%
Other 6 8%
Unknown 14 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 December 2015.
All research outputs
#13,202,980
of 22,807,037 outputs
Outputs from Frontiers in Molecular Biosciences
#843
of 3,770 outputs
Outputs of similar age
#123,141
of 266,316 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#13
of 26 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,770 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,316 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.