↓ Skip to main content

Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

Overview of attention for article published in Frontiers in Molecular Biosciences, January 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma
Published in
Frontiers in Molecular Biosciences, January 2016
DOI 10.3389/fmolb.2015.00076
Pubmed ID
Authors

Francesca Salvianti, Claudio Orlando, Daniela Massi, Vincenzo De Giorgi, Marta Grazzini, Mario Pazzagli, Pamela Pinzani

Abstract

Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs. RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET) as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC). The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic) than in healthy subjects (Pearson chi-squared test, p < 0.001). The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC) in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive and metastatic melanomas. Our data suggest that cell-free tumor DNA and CTCs represent two complementary aspects of the liquid biopsy which may improve the diagnosis and the clinical management of melanoma patients.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Ireland 1 1%
Unknown 66 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 25%
Researcher 13 19%
Student > Bachelor 8 12%
Student > Master 7 10%
Other 3 4%
Other 9 13%
Unknown 10 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 24 36%
Medicine and Dentistry 12 18%
Agricultural and Biological Sciences 11 16%
Chemistry 2 3%
Computer Science 2 3%
Other 4 6%
Unknown 12 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 April 2016.
All research outputs
#13,378,426
of 22,837,982 outputs
Outputs from Frontiers in Molecular Biosciences
#921
of 3,783 outputs
Outputs of similar age
#187,922
of 393,791 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#7
of 15 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,783 research outputs from this source. They receive a mean Attention Score of 3.3. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,791 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.