↓ Skip to main content

Circular RNAs: Biogenesis, Function and Role in Human Diseases

Overview of attention for article published in Frontiers in Molecular Biosciences, June 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

twitter
8 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
469 Dimensions

Readers on

mendeley
295 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Circular RNAs: Biogenesis, Function and Role in Human Diseases
Published in
Frontiers in Molecular Biosciences, June 2017
DOI 10.3389/fmolb.2017.00038
Pubmed ID
Authors

John Greene, Anne-Marie Baird, Lauren Brady, Marvin Lim, Steven G. Gray, Raymond McDermott, Stephen P. Finn

Abstract

Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 295 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 295 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 63 21%
Researcher 36 12%
Student > Master 33 11%
Student > Bachelor 31 11%
Student > Doctoral Student 13 4%
Other 33 11%
Unknown 86 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 96 33%
Agricultural and Biological Sciences 40 14%
Medicine and Dentistry 25 8%
Neuroscience 7 2%
Immunology and Microbiology 7 2%
Other 26 9%
Unknown 94 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 January 2019.
All research outputs
#3,767,639
of 22,977,819 outputs
Outputs from Frontiers in Molecular Biosciences
#315
of 3,846 outputs
Outputs of similar age
#67,831
of 317,259 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#2
of 29 outputs
Altmetric has tracked 22,977,819 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,846 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,259 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.