↓ Skip to main content

Competitive Inhibitors Unveil Structure/Function Relationships in Human D-Amino Acid Oxidase

Overview of attention for article published in Frontiers in Molecular Biosciences, November 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
1 X user
wikipedia
1 Wikipedia page

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Competitive Inhibitors Unveil Structure/Function Relationships in Human D-Amino Acid Oxidase
Published in
Frontiers in Molecular Biosciences, November 2017
DOI 10.3389/fmolb.2017.00080
Pubmed ID
Authors

Gianluca Molla

Abstract

D-amino acid oxidase (DAAO) catalyzes the oxidative deamination of several neutral D-amino acids and is the enzyme mainly responsible (together with serine racemase) for degrading D-serine (D-Ser) in the central nervous system of mammals. This D-amino acid, which binds the coagonist site of the N-methyl-D-aspartate receptor, is thus a key neuromodulator of glutamatergic neurotransmission. Altered D-Ser metabolism results in several pathological conditions (e.g., amylotrophic lateral sclerosis or schizophrenia, SZ) for which effective "broad spectrum" pharmaceutical drugs are not yet available. In particular, the correlation between reduced D-Ser concentration and SZ led to a renaissance of biochemical interest in human DAAO (hDAAO). In the last 10 years, public and corporate research laboratories undertook huge efforts to study the structural, enzymatic, and physiological properties of the human flavoenzyme and to identify novel effective inhibitors which, acting as pharmaceutical drugs, could decrease hDAAO activity, thus restoring the physiological concentration of D-Ser. Although, none of the identified hDAAO inhibitors has reached the market yet, from a biochemical point of view, these compounds turned out to be invaluable for gaining a detailed understanding of the structure/function relationships at the molecular level in the mammalian DAAO, in particular of the interaction between ligand and the enzyme. This detailed knowledge, together with several recent studies concerning the interaction of the human enzyme with other protein regulative partners, its subcellular localization, and in vivo degradation, contributed to gaining comprehensive knowledge of the structure, function, and physiopathological role of this important human enzyme.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 17%
Researcher 6 14%
Student > Master 3 7%
Student > Bachelor 2 5%
Student > Doctoral Student 2 5%
Other 3 7%
Unknown 19 45%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 26%
Medicine and Dentistry 3 7%
Chemistry 3 7%
Agricultural and Biological Sciences 2 5%
Psychology 1 2%
Other 3 7%
Unknown 19 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 April 2018.
All research outputs
#7,030,346
of 23,008,860 outputs
Outputs from Frontiers in Molecular Biosciences
#648
of 3,863 outputs
Outputs of similar age
#139,158
of 438,449 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#9
of 24 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 3,863 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,449 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.