↓ Skip to main content

Transport Granules Bound with Nuclear Cap Binding Protein and Exon Junction Complex Are Associated with Microtubules and Spatially Separated from eIF4E Granules and P Bodies in Human Neuronal…

Overview of attention for article published in Frontiers in Molecular Biosciences, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transport Granules Bound with Nuclear Cap Binding Protein and Exon Junction Complex Are Associated with Microtubules and Spatially Separated from eIF4E Granules and P Bodies in Human Neuronal Processes
Published in
Frontiers in Molecular Biosciences, December 2017
DOI 10.3389/fmolb.2017.00093
Pubmed ID
Authors

Dan O. Wang, Kensuke Ninomiya, Chihiro Mori, Ayako Koyama, Martine Haan, Makoto Kitabatake, Masatoshi Hagiwara, Kazuhiro Chida, Shin-Ichiro Takahashi, Mutsuhito Ohno, Naoyuki Kataoka

Abstract

RNA transport and regulated local translation play critically important roles in spatially restricting gene expression in neurons. Heterogeneous population of RNA granules serve as motile units to translocate, store, translate, and degrade mRNAs in the dendrites contain cis-elements and trans-acting factors such as RNA-binding proteins and microRNAs to convey stimulus-, transcript-specific local translation. Here we report a class of mRNA granules in human neuronal processes that are enriched in the nuclear cap-binding protein complex (CBC) and exon junction complex (EJC) core components, Y14 and eIF4AIII. These granules are physically associated with stabilized microtubules and are spatially segregated from eIF4E-enriched granules and P-bodies. The existence of mRNAs retaining both nuclear cap binding protein and EJC in the distal sites of neuronal processes suggests that some localized mRNAs have not yet undergone the "very first translation," which contribute to the spatio-temporal regulation of gene expression.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 28%
Researcher 9 25%
Professor > Associate Professor 3 8%
Student > Doctoral Student 2 6%
Professor 2 6%
Other 5 14%
Unknown 5 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 39%
Neuroscience 7 19%
Agricultural and Biological Sciences 7 19%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Unknown 6 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 December 2017.
All research outputs
#18,579,736
of 23,012,811 outputs
Outputs from Frontiers in Molecular Biosciences
#1,984
of 3,866 outputs
Outputs of similar age
#329,007
of 440,933 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#27
of 36 outputs
Altmetric has tracked 23,012,811 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,866 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,933 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.