↓ Skip to main content

Systematic Analysis of Gene Expression Profiles Controlled by hnRNP Q and hnRNP R, Two Closely Related Human RNA Binding Proteins Implicated in mRNA Processing Mechanisms

Overview of attention for article published in Frontiers in Molecular Biosciences, August 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Systematic Analysis of Gene Expression Profiles Controlled by hnRNP Q and hnRNP R, Two Closely Related Human RNA Binding Proteins Implicated in mRNA Processing Mechanisms
Published in
Frontiers in Molecular Biosciences, August 2018
DOI 10.3389/fmolb.2018.00079
Pubmed ID
Authors

Sara Cappelli, Maurizio Romano, Emanuele Buratti

Abstract

Heteregeneous ribonucleoproteins (hnRNPs) are a family of RNA-binding proteins that take part in all processes that involve mRNA maturation. As a consequence, alterations of their homeostasis may lead to many complex pathological disorders, such as neurodegeneration and cancer. For many of these proteins, however, their exact function and cellular targets are still not very well known. Here, we focused the attention on two hnRNP family members, hnRNP Q and hnRNP R, that we previously found affecting TDP-43 activity both in Drosophila melanogaster and human neuronal cell line. Classification of these two human proteins as paralogs is suported by the high level of sequence homology and by the observation that in fly they correspond to the same protein, namely Syp. We profiled differentially expressed genes from RNA-Seq and generated functional enrichment results after silencing of hnRNP Q and hnRNP R in neuroblastoma SH-SY5Y cell line. Interestingly, despite their high sequence similarity, these two proteins were found to affect different cellular pathways, especially with regards to neurodegeneration, such as PENK, NGR3, RAB26, JAG1, as well as inflammatory response, such as TNF, ICAM1, ICAM5, and TNFRSF9. In conclusion, human hnRNP Q and hnRNP R may be considered potentially important regulators of neuronal homeostasis and their disruption could impair distinct pathways in the central nervous system axis, thus confirming the importance of their conservation during evolution.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 20%
Student > Master 7 17%
Researcher 6 15%
Student > Bachelor 5 12%
Professor 1 2%
Other 2 5%
Unknown 12 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 32%
Agricultural and Biological Sciences 5 12%
Neuroscience 3 7%
Nursing and Health Professions 1 2%
Computer Science 1 2%
Other 5 12%
Unknown 13 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 December 2020.
All research outputs
#6,391,095
of 23,577,654 outputs
Outputs from Frontiers in Molecular Biosciences
#576
of 4,109 outputs
Outputs of similar age
#110,008
of 335,856 outputs
Outputs of similar age from Frontiers in Molecular Biosciences
#10
of 20 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 4,109 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,856 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.