↓ Skip to main content

In vivo Differential Brain Clearance and Catabolism of Monomeric and Oligomeric Alzheimer's Aβ protein

Overview of attention for article published in Frontiers in Aging Neuroscience, September 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In vivo Differential Brain Clearance and Catabolism of Monomeric and Oligomeric Alzheimer's Aβ protein
Published in
Frontiers in Aging Neuroscience, September 2016
DOI 10.3389/fnagi.2016.00223
Pubmed ID
Authors

Farron L. McIntee, Patrizia Giannoni, Steven Blais, George Sommer, Thomas A. Neubert, Agueda Rostagno, Jorge Ghiso

Abstract

Amyloid β (Aβ) is the major constituent of the brain deposits found in parenchymal plaques and cerebral blood vessels of patients with Alzheimer's disease (AD). Several lines of investigation support the notion that synaptic pathology, one of the strongest correlates to cognitive impairment, is related to the progressive accumulation of neurotoxic Aβ oligomers. Since the process of oligomerization/fibrillization is concentration-dependent, it is highly reliant on the homeostatic mechanisms that regulate the steady state levels of Aβ influencing the delicate balance between rate of synthesis, dynamics of aggregation, and clearance kinetics. Emerging new data suggest that reduced Aβ clearance, particularly in the aging brain, plays a critical role in the process of amyloid formation and AD pathogenesis. Using well-defined monomeric and low molecular mass oligomeric Aβ1-40 species stereotaxically injected into the brain of C57BL/6 wild-type mice in combination with biochemical and mass spectrometric analyses in CSF, our data clearly demonstrate that Aβ physiologic removal is extremely fast and involves local proteolytic degradation leading to the generation of heterogeneous C-terminally cleaved proteolytic products, while providing clear indication of the detrimental role of oligomerization for brain Aβ efflux. Immunofluorescence confocal microscopy studies provide insight into the cellular pathways involved in the brain removal and cellular uptake of Aβ. The findings indicate that clearance from brain interstitial fluid follows local and systemic paths and that in addition to the blood-brain barrier, local enzymatic degradation and the bulk flow transport through the choroid plexus into the CSF play significant roles. Our studies highlight the diverse factors influencing brain clearance and the participation of various routes of elimination opening up new research opportunities for the understanding of altered mechanisms triggering AD pathology and for the potential design of combined therapeutic strategies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 51 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 15%
Student > Ph. D. Student 8 15%
Student > Doctoral Student 5 10%
Student > Bachelor 5 10%
Student > Master 3 6%
Other 6 12%
Unknown 17 33%
Readers by discipline Count As %
Neuroscience 9 17%
Biochemistry, Genetics and Molecular Biology 6 12%
Agricultural and Biological Sciences 5 10%
Medicine and Dentistry 5 10%
Engineering 3 6%
Other 4 8%
Unknown 20 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 October 2016.
All research outputs
#3,210,314
of 22,889,074 outputs
Outputs from Frontiers in Aging Neuroscience
#1,730
of 4,820 outputs
Outputs of similar age
#57,370
of 322,819 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#28
of 68 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,820 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,819 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 68 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.