↓ Skip to main content

DJ-1 Inhibits α-Synuclein Aggregation by Regulating Chaperone-Mediated Autophagy

Overview of attention for article published in Frontiers in Aging Neuroscience, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
111 Dimensions

Readers on

mendeley
119 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
DJ-1 Inhibits α-Synuclein Aggregation by Regulating Chaperone-Mediated Autophagy
Published in
Frontiers in Aging Neuroscience, September 2017
DOI 10.3389/fnagi.2017.00308
Pubmed ID
Authors

Chuan-Ying Xu, Wen-Yan Kang, Yi-Meng Chen, Tian-Fang Jiang, Jia Zhang, Li-Na Zhang, Jian-Qing Ding, Jun Liu, Sheng-Di Chen

Abstract

α-Synuclein misfolding and aggregation play an important role in the pathogenesis of Parkinson's disease (PD). Loss of function and mutation of the PARK7/DJ-1 gene cause early-onset familial PD. DJ-1 can inhibit α-synuclein aggregation, and may function at an early step in the aggregation process. Soluble wild-type (WT) α-synuclein is mainly degraded by chaperone-mediated autophagy (CMA), and impairment of CMA is closely related to the pathogenesis of PD. Here, we investigated whether DJ-1 could reduce α-synuclein accumulation and aggregation by CMA. DJ-1 knockout mice and DJ-1 siRNA knockdown SH-SY5Y cells were used to investigate the potential mechanisms underlying the relationship between DJ-1 deficiency and α-synuclein aggregation. First, we confirmed that DJ-1 deficiency increased the accumulation and aggregation of α-synuclein in both SH-SY5Y cells and PD animal models, and overexpression of DJ-1 in vitro effectively decreased α-synuclein levels. α-Synuclein overexpression activated CMA by elevating the levels of lysosome-associated membrane protein type-2A (LAMP2A), but DJ-1 deficiency suppressed upregulation of LAMP2A. DJ-1 deficiency downregulated the level of lysosomal 70 kDa heat-shock cognate protein (HSC70) but not the levels of that in homogenates. Further studies showed that DJ-1 deficiency accelerated the degradation of LAMP2A in lysosomes, leading to the aggregation of α-synuclein. Our study suggests that DJ-1 deficiency aggravates α-synuclein aggregation by inhibiting the activation of CMA and provides further evidence of the molecular interaction between PD-related proteins via the CMA pathway.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 119 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 119 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 15%
Researcher 17 14%
Student > Bachelor 17 14%
Student > Master 12 10%
Student > Postgraduate 6 5%
Other 9 8%
Unknown 40 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 24 20%
Neuroscience 20 17%
Agricultural and Biological Sciences 9 8%
Medicine and Dentistry 9 8%
Pharmacology, Toxicology and Pharmaceutical Science 5 4%
Other 9 8%
Unknown 43 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 October 2017.
All research outputs
#14,956,098
of 23,003,906 outputs
Outputs from Frontiers in Aging Neuroscience
#3,389
of 4,839 outputs
Outputs of similar age
#189,504
of 320,773 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#60
of 93 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,839 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,773 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 93 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.