↓ Skip to main content

Linking Inter-Individual Variability in Functional Brain Connectivity to Cognitive Ability in Elderly Individuals

Overview of attention for article published in Frontiers in Aging Neuroscience, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Linking Inter-Individual Variability in Functional Brain Connectivity to Cognitive Ability in Elderly Individuals
Published in
Frontiers in Aging Neuroscience, November 2017
DOI 10.3389/fnagi.2017.00385
Pubmed ID
Authors

Rui Li, Shufei Yin, Xinyi Zhu, Weicong Ren, Jing Yu, Pengyun Wang, Zhiwei Zheng, Ya-Nan Niu, Xin Huang, Juan Li

Abstract

Increasing evidence suggests that functional brain connectivity is an important determinant of cognitive aging. However, the fundamental concept of inter-individual variations in functional connectivity in older individuals is not yet completely understood. It is essential to evaluate the extent to which inter-individual variability in connectivity impacts cognitive performance at an older age. In the current study, we aimed to characterize individual variability of functional connectivity in the elderly and to examine its significance to individual cognition. We mapped inter-individual variability of functional connectivity by analyzing whole-brain functional connectivity magnetic resonance imaging data obtained from a large sample of cognitively normal older adults. Our results demonstrated a gradual increase in variability in primary regions of the visual, sensorimotor, and auditory networks to specific subcortical structures, particularly the hippocampal formation, and the prefrontal and parietal cortices, which largely constitute the default mode and fronto-parietal networks, to the cerebellum. Further, the inter-individual variability of the functional connectivity correlated significantly with the degree of cognitive relevance. Regions with greater connectivity variability demonstrated more connections that correlated with cognitive performance. These results also underscored the crucial function of the long-range and inter-network connections in individual cognition. Thus, individual connectivity-cognition variability mapping findings may provide important information for future research on cognitive aging and neurocognitive diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 67 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 19%
Researcher 13 19%
Student > Master 9 13%
Student > Doctoral Student 4 6%
Student > Bachelor 3 4%
Other 7 10%
Unknown 18 27%
Readers by discipline Count As %
Neuroscience 14 21%
Psychology 12 18%
Engineering 3 4%
Physics and Astronomy 3 4%
Agricultural and Biological Sciences 1 1%
Other 5 7%
Unknown 29 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 December 2017.
All research outputs
#14,369,287
of 23,009,818 outputs
Outputs from Frontiers in Aging Neuroscience
#3,253
of 4,843 outputs
Outputs of similar age
#235,977
of 437,742 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#67
of 99 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,843 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,742 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 99 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.