↓ Skip to main content

Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study

Overview of attention for article published in Frontiers in Aging Neuroscience, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study
Published in
Frontiers in Aging Neuroscience, March 2018
DOI 10.3389/fnagi.2018.00053
Pubmed ID
Authors

Chia-Hsiung Cheng, Mei-Yin Lin, Shiou-Han Yang

Abstract

Age-related deficiency in the top-down modulation of cognitive inhibition has been extensively documented, whereas the effects of age on a bottom-up or automatic operation of inhibitory function were less investigated. It is unknown that whether the older adults (OA)' reduced behavioral performance and neural responses are due to the insufficient bottom-up processes. Compared to behavioral assessments which have been widely used to examine the top-down control of response inhibition, electrophysiological recordings are more suitable to probe the early-stage processes of automatic inhibitory function. Sensory gating (SG), a phenomenon of attenuated neural response to the second identical stimulus in a paired-pulse paradigm, is an indicator to assess automatic inhibitory function of the sensory cortex. On the other hand, electricity-induced beta rebound oscillation in a single-pulse paradigm reflects cortical inhibition of the motor cortex. From the neurophysiological perspective, SG and beta rebound oscillation are replicable indicators to examine the automatic inhibitory function of human sensorimotor cortices. Thus, the present study aimed to use a whole-head magnetoencephalography (MEG) to investigate the age-related alterations of SG function in the primary somatosensory cortex (SI) and of beta rebound oscillation in the primary motor cortex (MI) in 17 healthy younger and 15 older adults. The Stimulus 2/Stimulus 1 (S2/S1) amplitude ratio in response to the paired-pulse electrical stimulation to the left median nerve was used to evaluate the automatic inhibitory function of SI, and the beta rebound response in the single-pulse paradigm was used to evaluate the automatic inhibitory function of MI. Although there were no significant age-related differences found in the SI SG ratios, the MI beta rebound power was reduced and peak latency was prolonged in the OA. Furthermore, significant association between the SI SG ratio and the MI beta rebound power, which was seen in the younger adults (YA), was absent in the OA. In conclusion, our data suggested an age-related defect of association between sensorimotor cortices regarding automatic inhibitory function.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 19%
Student > Ph. D. Student 6 14%
Researcher 3 7%
Professor 3 7%
Professor > Associate Professor 3 7%
Other 3 7%
Unknown 17 40%
Readers by discipline Count As %
Neuroscience 8 19%
Medicine and Dentistry 3 7%
Nursing and Health Professions 2 5%
Engineering 2 5%
Sports and Recreations 2 5%
Other 7 16%
Unknown 19 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 March 2018.
All research outputs
#14,840,796
of 23,026,672 outputs
Outputs from Frontiers in Aging Neuroscience
#3,368
of 4,846 outputs
Outputs of similar age
#198,457
of 331,402 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#79
of 106 outputs
Altmetric has tracked 23,026,672 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,846 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,402 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 106 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.