↓ Skip to main content

The Aβ Containing Brain Extracts Having Different Effects in Alzheimer’s Disease Transgenic Caenorhabditis elegans and Mice

Overview of attention for article published in Frontiers in Aging Neuroscience, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

news
1 news outlet
twitter
5 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Aβ Containing Brain Extracts Having Different Effects in Alzheimer’s Disease Transgenic Caenorhabditis elegans and Mice
Published in
Frontiers in Aging Neuroscience, July 2018
DOI 10.3389/fnagi.2018.00208
Pubmed ID
Authors

Yufang Yang, Mo Wang, Ping Yang, Zishan Wang, Li Huang, Jing Xu, Wei Wang, Mei Yu, Liping Bu, Jian Fei, Fang Huang

Abstract

Background: The deposition of β-sheet rich amyloid in senile plaques is a pathological hallmark of Alzheimer's disease (AD), which is thought to cause neuronal dysfunction. Previous studies have strongly implicated that intracerebral infusion of brain extract containing aggregated β-amyloid (Aβ) is able to induce cerebral amyloidosis thus causing neuronal damage and clinical abnormalities in rodents and nonhuman primates, which are reminiscent of a prion-like mechanism. Prion disease has been documented in cases of prion-contaminated food consumption. Methods: We investigated whether cerebral transmission of Aβ was possible via oral administration of Aβ-rich brain extract in non-susceptible and susceptible host mice by immunohistochemistry, western blotting and behavior tests. Also brain extracts were supplied to AD transgenic Caenorhabditis elegans, and paralysis curve were conducted, following detection of Aβ amyloid. RNA sequencing of nematodes was applied then inhibitors for relevant dysregulated genes were used in the paralysis induction. Results: The oral treatment of AD brain extract or normal brain extract neither aggravated nor mitigated the Aβ load, glial activation or the abnormal behaviors in recipient Amyloid precursor protein/presenilin 1 (APP/PS1) mice. Whereas, a significant improvement of AD pathology was detected in worms treated with Aβ-rich or normal brain extracts, which was attributable to the heat-sensitive components of brain extracts. Transcriptome sequencing of CL4176 nematodes suggested that brain extracts could delay worm paralysis through multiple pathways, including ubiquitin mediated proteolysis and Transforming growth factor β (TGF-β) signaling pathway. Inhibitors of the ubiquitin proteasome system and the TGF-β signaling pathway significantly blocked the suppressive effects of brain extracts on worm paralysis. Conclusions: Our results suggest that systemic transmissible mechanisms of prion proteopathy may not apply to β amyloid, at least in terms of oral administration. However, brain extracts strongly ameliorated AD pathology in AD transgenic nematodes partially through TGF-β signaling pathway and ubiquitin mediated proteolysis, which indicated that some natural endogenous components in the mammalian tissues could resist Aβ toxicity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 17%
Other 3 13%
Student > Ph. D. Student 3 13%
Researcher 2 9%
Lecturer 1 4%
Other 4 17%
Unknown 6 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 26%
Agricultural and Biological Sciences 2 9%
Unspecified 1 4%
Chemical Engineering 1 4%
Business, Management and Accounting 1 4%
Other 3 13%
Unknown 9 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2018.
All research outputs
#2,925,024
of 23,099,576 outputs
Outputs from Frontiers in Aging Neuroscience
#1,313
of 4,871 outputs
Outputs of similar age
#60,861
of 329,835 outputs
Outputs of similar age from Frontiers in Aging Neuroscience
#30
of 89 outputs
Altmetric has tracked 23,099,576 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,871 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.2. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,835 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 89 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.