↓ Skip to main content

Input transformation by dendritic spines of pyramidal neurons

Overview of attention for article published in Frontiers in Neuroanatomy, December 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
133 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Input transformation by dendritic spines of pyramidal neurons
Published in
Frontiers in Neuroanatomy, December 2014
DOI 10.3389/fnana.2014.00141
Pubmed ID
Authors

Roberto Araya

Abstract

In the mammalian brain, most inputs received by a neuron are formed on the dendritic tree. In the neocortex, the dendrites of pyramidal neurons are covered by thousands of tiny protrusions known as dendritic spines, which are the major recipient sites for excitatory synaptic information in the brain. Their peculiar morphology, with a small head connected to the dendritic shaft by a slender neck, has inspired decades of theoretical and more recently experimental work in an attempt to understand how excitatory synaptic inputs are processed, stored and integrated in pyramidal neurons. Advances in electrophysiological, optical and genetic tools are now enabling us to unravel the biophysical and molecular mechanisms controlling spine function in health and disease. Here I highlight relevant findings, challenges and hypotheses on spine function, with an emphasis on the electrical properties of spines and on how these affect the storage and integration of excitatory synaptic inputs in pyramidal neurons. In an attempt to make sense of the published data, I propose that the raison d'etre for dendritic spines lies in their ability to undergo activity-dependent structural and molecular changes that can modify synaptic strength, and hence alter the gain of the linearly integrated sub-threshold depolarizations in pyramidal neuron dendrites before the generation of a dendritic spike.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 133 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 2 2%
United States 2 2%
Portugal 1 <1%
Germany 1 <1%
Unknown 127 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 32 24%
Researcher 28 21%
Student > Master 14 11%
Professor 12 9%
Student > Bachelor 11 8%
Other 24 18%
Unknown 12 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 46 35%
Neuroscience 46 35%
Medicine and Dentistry 8 6%
Engineering 6 5%
Biochemistry, Genetics and Molecular Biology 5 4%
Other 9 7%
Unknown 13 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 July 2015.
All research outputs
#14,204,262
of 22,770,070 outputs
Outputs from Frontiers in Neuroanatomy
#661
of 1,159 outputs
Outputs of similar age
#191,639
of 361,245 outputs
Outputs of similar age from Frontiers in Neuroanatomy
#22
of 40 outputs
Altmetric has tracked 22,770,070 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,159 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.9. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,245 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.