↓ Skip to main content

Modeling brain circuitry over a wide range of scales

Overview of attention for article published in Frontiers in Neuroanatomy, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
38 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modeling brain circuitry over a wide range of scales
Published in
Frontiers in Neuroanatomy, April 2015
DOI 10.3389/fnana.2015.00042
Pubmed ID
Authors

Pascal Fua, Graham W. Knott

Abstract

If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
China 1 3%
Unknown 36 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 26%
Student > Ph. D. Student 6 16%
Student > Master 6 16%
Student > Bachelor 2 5%
Other 2 5%
Other 5 13%
Unknown 7 18%
Readers by discipline Count As %
Neuroscience 9 24%
Agricultural and Biological Sciences 8 21%
Computer Science 6 16%
Environmental Science 1 3%
Physics and Astronomy 1 3%
Other 5 13%
Unknown 8 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 April 2015.
All research outputs
#15,325,004
of 22,792,160 outputs
Outputs from Frontiers in Neuroanatomy
#787
of 1,158 outputs
Outputs of similar age
#157,787
of 264,831 outputs
Outputs of similar age from Frontiers in Neuroanatomy
#21
of 33 outputs
Altmetric has tracked 22,792,160 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,158 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.0. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,831 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.