↓ Skip to main content

Anatomically Detailed and Large-Scale Simulations Studying Synapse Loss and Synchrony Using NeuroBox

Overview of attention for article published in Frontiers in Neuroanatomy, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Anatomically Detailed and Large-Scale Simulations Studying Synapse Loss and Synchrony Using NeuroBox
Published in
Frontiers in Neuroanatomy, February 2016
DOI 10.3389/fnana.2016.00008
Pubmed ID
Authors

Markus Breit, Martin Stepniewski, Stephan Grein, Pascal Gottmann, Lukas Reinhardt, Gillian Queisser

Abstract

The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as NeuroMorpho.org, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic, or reconstruction) to the simulation platform UG 4 (which harbors a neuroscientific portfolio) and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g., new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 5%
Unknown 20 95%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 19%
Student > Ph. D. Student 4 19%
Professor 2 10%
Student > Master 2 10%
Professor > Associate Professor 2 10%
Other 1 5%
Unknown 6 29%
Readers by discipline Count As %
Computer Science 4 19%
Engineering 3 14%
Medicine and Dentistry 2 10%
Agricultural and Biological Sciences 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Other 2 10%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 February 2016.
All research outputs
#15,357,941
of 22,846,662 outputs
Outputs from Frontiers in Neuroanatomy
#788
of 1,161 outputs
Outputs of similar age
#236,158
of 400,467 outputs
Outputs of similar age from Frontiers in Neuroanatomy
#26
of 38 outputs
Altmetric has tracked 22,846,662 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,161 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.9. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 400,467 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.