↓ Skip to main content

Hornets Have It: A Conserved Olfactory Subsystem for Social Recognition in Hymenoptera?

Overview of attention for article published in Frontiers in Neuroanatomy, June 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hornets Have It: A Conserved Olfactory Subsystem for Social Recognition in Hymenoptera?
Published in
Frontiers in Neuroanatomy, June 2017
DOI 10.3389/fnana.2017.00048
Pubmed ID
Authors

Antoine Couto, Aniruddha Mitra, Denis Thiéry, Frédéric Marion-Poll, Jean-Christophe Sandoz

Abstract

Eusocial Hymenoptera colonies are characterized by the presence of altruistic individuals, which rear their siblings instead of their own offspring. In the course of evolution, such sterile castes are thought to have emerged through the process of kin selection, altruistic traits being transmitted to following generation if they benefit relatives. By allowing kinship recognition, the detection of cuticular hydrocarbons (CHCs) might be instrumental for kin selection. In carpenter ants, a female-specific olfactory subsystem processes CHC information through antennal detection by basiconic sensilla. It is still unclear if other families of eusocial Hymenoptera use the same subsystem for sensing CHCs. Here, we examined the existence of such a subsystem in Vespidae (using the hornet Vespa velutina), a family in which eusociality emerged independently of ants. The antennae of both males and female hornets contain large basiconic sensilla. Sensory neurons from the large basiconic sensilla exclusively project to a conspicuous cluster of small glomeruli in the antennal lobe, with anatomical and immunoreactive features that are strikingly similar to those of the ant CHC-sensitive subsystem. Extracellular electrophysiological recordings further show that sensory neurons within hornet basiconic sensilla preferentially respond to CHCs. Although this subsystem is not female-specific in hornets, the observed similarities with the olfactory system of ants are striking. They suggest that the basiconic sensilla subsystem could be an ancestral trait, which may have played a key role in the advent of eusociality in these hymenopteran families by allowing kin recognition and the production of altruistic behaviors toward relatives.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 17 24%
Student > Ph. D. Student 13 18%
Student > Master 6 8%
Student > Bachelor 5 7%
Student > Postgraduate 5 7%
Other 11 15%
Unknown 14 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 42%
Neuroscience 9 13%
Environmental Science 5 7%
Biochemistry, Genetics and Molecular Biology 4 6%
Unspecified 2 3%
Other 5 7%
Unknown 16 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 July 2017.
All research outputs
#12,848,774
of 22,981,247 outputs
Outputs from Frontiers in Neuroanatomy
#513
of 1,166 outputs
Outputs of similar age
#147,588
of 317,509 outputs
Outputs of similar age from Frontiers in Neuroanatomy
#10
of 24 outputs
Altmetric has tracked 22,981,247 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,166 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.9. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,509 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.