↓ Skip to main content

Distinct BOLD Activation Profiles Following Central and Peripheral Oxytocin Administration in Awake Rats

Overview of attention for article published in Frontiers in Behavioral Neuroscience, September 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
75 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Distinct BOLD Activation Profiles Following Central and Peripheral Oxytocin Administration in Awake Rats
Published in
Frontiers in Behavioral Neuroscience, September 2015
DOI 10.3389/fnbeh.2015.00245
Pubmed ID
Authors

Craig F. Ferris, Jason R. Yee, William M. Kenkel, Kelly Marie Dumais, Kelsey Moore, Alexa H. Veenema, Praveen Kulkarni, Allison M. Perkybile, C. Sue Carter

Abstract

A growing body of literature has suggested that intranasal oxytocin (OT) or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level-dependent (BOLD) signal intensity in response to peripheral OT injections (0.1, 0.5, or 2.5 mg/kg) during functional magnetic resonance imaging (fMRI) in awake rats imaged at 7.0 T. These data were compared to OT (1 μg/5 μl) given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis, we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors, e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose-response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Unknown 74 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 24%
Student > Master 12 16%
Researcher 9 12%
Student > Bachelor 6 8%
Professor > Associate Professor 4 5%
Other 10 13%
Unknown 16 21%
Readers by discipline Count As %
Neuroscience 20 27%
Psychology 16 21%
Agricultural and Biological Sciences 8 11%
Biochemistry, Genetics and Molecular Biology 3 4%
Medicine and Dentistry 3 4%
Other 5 7%
Unknown 20 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2015.
All research outputs
#13,211,650
of 22,824,164 outputs
Outputs from Frontiers in Behavioral Neuroscience
#1,526
of 3,168 outputs
Outputs of similar age
#124,727
of 272,395 outputs
Outputs of similar age from Frontiers in Behavioral Neuroscience
#39
of 87 outputs
Altmetric has tracked 22,824,164 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,168 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.4. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 272,395 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 87 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.