↓ Skip to main content

Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans

Overview of attention for article published in Frontiers in Behavioral Neuroscience, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
92 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans
Published in
Frontiers in Behavioral Neuroscience, May 2017
DOI 10.3389/fnbeh.2017.00080
Pubmed ID
Authors

Saori Nishijima, Ichiro N Maruyama

Abstract

Because of the relative simplicity of its nervous system, Caenorhabditis elegans is a useful model organism to study learning and memory at cellular and molecular levels. For appetitive conditioning in C. elegans, food has exclusively been used as an unconditioned stimulus (US). It may be difficult to analyze neuronal circuits for associative memory since food is a multimodal combination of olfactory, gustatory, and mechanical stimuli. Here, we report classical appetitive conditioning and associative memory in C. elegans, using 1-nonanol as a conditioned stimulus (CS), and potassium chloride (KCl) as a US. Before conditioning, C. elegans innately avoided 1-nonanol, an aversive olfactory stimulus, and was attracted by KCl, an appetitive gustatory stimulus, on assay agar plates. Both massed training without an intertrial interval (ITI) and spaced training with a 10-min ITI induced significant levels of memory of association regarding the two chemicals. Memory induced by massed training decayed within 6 h, while that induced by spaced training was retained for more than 6 h. Animals treated with inhibitors of transcription or translation formed the memory induced by spaced training less efficiently than untreated animals, whereas the memory induced by massed training was not significantly affected by such treatments. By definition, therefore, memories induced by massed training and spaced training are classified as short-term memory (STM) and long-term memory (LTM), respectively. When animals conditioned by spaced training were exposed to 1-nonanol alone, their learning index was lower than that of untreated animals, suggesting that extinction learning occurs in C. elegans. In support of these results, C. elegans mutants defective in nmr-1, encoding an NMDA receptor subunit, formed both STM and LTM less efficiently than wild-type animals, while mutations in crh-1, encoding a ubiquitous transcription factor CREB required for memory consolidation, affected LTM, but not STM. The paradigm established in the present study should allow us to elucidate neuronal circuit plasticity for appetitive learning and memory in C. elegans.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 92 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 92 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 18%
Student > Bachelor 13 14%
Student > Master 11 12%
Researcher 10 11%
Other 6 7%
Other 14 15%
Unknown 21 23%
Readers by discipline Count As %
Neuroscience 20 22%
Agricultural and Biological Sciences 19 21%
Biochemistry, Genetics and Molecular Biology 10 11%
Business, Management and Accounting 3 3%
Physics and Astronomy 3 3%
Other 12 13%
Unknown 25 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 May 2017.
All research outputs
#13,547,128
of 22,963,381 outputs
Outputs from Frontiers in Behavioral Neuroscience
#1,632
of 3,195 outputs
Outputs of similar age
#158,757
of 310,713 outputs
Outputs of similar age from Frontiers in Behavioral Neuroscience
#39
of 68 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,195 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.3. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,713 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 68 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.