↓ Skip to main content

Fenofibrate Administration Reduces Alcohol and Saccharin Intake in Rats: Possible Effects at Peripheral and Central Levels

Overview of attention for article published in Frontiers in Behavioral Neuroscience, July 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fenofibrate Administration Reduces Alcohol and Saccharin Intake in Rats: Possible Effects at Peripheral and Central Levels
Published in
Frontiers in Behavioral Neuroscience, July 2017
DOI 10.3389/fnbeh.2017.00133
Pubmed ID
Authors

Mario Rivera-Meza, Daniel Muñoz, Erik Jerez, María E. Quintanilla, Catalina Salinas-Luypaert, Katia Fernandez, Eduardo Karahanian

Abstract

We have previously shown that the administration of fenofibrate to high-drinker UChB rats markedly reduces voluntary ethanol intake. Fenofibrate is a peroxisome proliferator-activated receptor alpha (PPARα) agonist, which induces the proliferation of peroxisomes in the liver, leading to increases in catalase levels that result in acetaldehyde accumulation at aversive levels in the blood when animals consume ethanol. In these new studies, we aimed to investigate if the effect of fenofibrate on ethanol intake is produced exclusively in the liver (increasing catalase and systemic levels of acetaldehyde) or there might be additional effects at central level. High drinker rats (UChB) were allowed to voluntary drink 10% ethanol for 2 months. Afterward, a daily dose of fenofibrate (25, 50 or 100 mg/kg/day) or vehicle (as control) was administered orally for 14 days. Voluntary ethanol intake was recorded daily. After that time, animals were deprived of ethanol access for 24 h and administered with an oral dose of ethanol (1 g/kg) for acetaldehyde determination in blood. Fenofibrate reduced ethanol voluntary intake by 60%, in chronically drinking rats, at the three doses tested. Acetaldehyde in the blood rose up to between 80 μM and 100 μM. Considering the reduction of ethanol consumption, blood acetaldehyde levels and body weight evolution, the better results were obtained at a dose of 50 mg fenofibrate/kg/day. This dose of fenofibrate also reduced the voluntary intake of 0.2% saccharin by 35% and increased catalase levels 2.5-fold in the liver but showed no effects on catalase levels in the brain. To further study if fenofibrate administration changes the motivational properties of ethanol, a conditioned-place preference experiment was carried out. Animals treated with fenofibrate (50 mg/kg/day) did not develop ethanol-conditioned place preference (CPP).In an additional experiment, chronically ethanol-drinking rats underwent two cycles of ethanol deprivation/re-access, and fenofibrate (50 mg/kg/day) was given only in deprivation periods; under this paradigm, fenofibrate was also able to generate a prolonged (30 days) decreasing of ethanol consumption, suggesting some effect beyond the acetaldehyde-generated aversion. In summary, reduction of ethanol intake by fenofibrate appears to be a consequence of a combination of catalase induction in the liver and central pharmacological effects.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 17%
Student > Doctoral Student 4 13%
Professor 2 7%
Student > Master 2 7%
Student > Ph. D. Student 2 7%
Other 4 13%
Unknown 11 37%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 5 17%
Biochemistry, Genetics and Molecular Biology 5 17%
Nursing and Health Professions 2 7%
Medicine and Dentistry 2 7%
Environmental Science 1 3%
Other 4 13%
Unknown 11 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 July 2017.
All research outputs
#18,562,247
of 22,990,068 outputs
Outputs from Frontiers in Behavioral Neuroscience
#2,620
of 3,198 outputs
Outputs of similar age
#239,247
of 312,508 outputs
Outputs of similar age from Frontiers in Behavioral Neuroscience
#55
of 59 outputs
Altmetric has tracked 22,990,068 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,198 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.3. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,508 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.