↓ Skip to main content

Olfactory Memory Impairment Differs by Sex in a Rodent Model of Pediatric Radiotherapy

Overview of attention for article published in Frontiers in Behavioral Neuroscience, August 2018
Altmetric Badge

Mentioned by

twitter
4 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Olfactory Memory Impairment Differs by Sex in a Rodent Model of Pediatric Radiotherapy
Published in
Frontiers in Behavioral Neuroscience, August 2018
DOI 10.3389/fnbeh.2018.00158
Pubmed ID
Authors

Emma C. Perez, Shaefali P. Rodgers, Taeko Inoue, Steen E. Pedersen, J. Leigh Leasure, M. Waleed Gaber

Abstract

Although an effective treatment for pediatric brain tumors, cranial radiation therapy (CRT) damages surrounding healthy tissue, thereby disrupting brain development. Animal models of pediatric CRT have primarily relied on visual tasks to assess cognitive impairment. Moreover, there has been a lack of sex comparisons as most research on the cognitive effects of pediatric CRT does not include females. Therefore, we utilized olfaction, an ethologically relevant sensory modality, to assess cognitive impairment in an animal model of CRT that included both male and female mice. Specifically, we used the novel odor recognition (NOdorR) task with social odors to test recognition memory, a cognitive parameter that has been associated with olfactory neurogenesis, a form of cellular plasticity damaged by CRT. In addition to odor recognition memory, olfactory ability or discrimination of non-social and social odors were assessed both acutely and 3 months after CRT. Magnetic resonance imaging (MRI) and histology were performed after behavioral testing to assess long-term damage by CRT. Long-term but not acute radiation-induced impairment in odor recognition memory was observed, consistent with delayed onset of cognitive impairment in human patients. Males showed greater exploration of social odors than females, but general exploration was not affected by irradiation. However, irradiated males had impaired odor recognition memory in adulthood, compared to non-irradiated males (or simply male controls). Female olfactory recognition memory, in contrast, was dependent on estrus stage. CRT damage was demonstrated by (1) histological evaluation of olfactory neurogenesis, which suggested a reduction in CRT versus control, and (2) imaging analyses which showed that the majority of brain regions were reduced in volume by CRT. Specifically, two regions involved in social odor processing (amygdala and piriform cortex) were damaged by cranial irradiation in males but not females, paralleling olfactory recognition findings.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 17%
Student > Bachelor 6 17%
Researcher 3 9%
Student > Doctoral Student 2 6%
Professor > Associate Professor 2 6%
Other 5 14%
Unknown 11 31%
Readers by discipline Count As %
Neuroscience 8 23%
Psychology 5 14%
Biochemistry, Genetics and Molecular Biology 3 9%
Business, Management and Accounting 1 3%
Nursing and Health Professions 1 3%
Other 4 11%
Unknown 13 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 August 2018.
All research outputs
#15,539,088
of 23,094,276 outputs
Outputs from Frontiers in Behavioral Neuroscience
#2,247
of 3,213 outputs
Outputs of similar age
#210,107
of 331,118 outputs
Outputs of similar age from Frontiers in Behavioral Neuroscience
#77
of 90 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,213 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.3. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,118 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 90 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.