↓ Skip to main content

An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

Overview of attention for article published in Frontiers in Neurorobotics, November 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (63rd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
85 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger
Published in
Frontiers in Neurorobotics, November 2016
DOI 10.3389/fnbot.2016.00018
Pubmed ID
Authors

Irfan Hussain, Giovanni Spagnoletti, Gionata Salvietti, Domenico Prattichizzo

Abstract

In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human's ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can successfully be used, not only to control the motion of a supernumerary robotic finger but also to regulate its compliance. The proposed approach can be exploited also for the control of different wearable devices that has to actively cooperate with the human limbs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 85 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 85 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 11 13%
Student > Ph. D. Student 10 12%
Student > Master 9 11%
Researcher 7 8%
Student > Doctoral Student 5 6%
Other 15 18%
Unknown 28 33%
Readers by discipline Count As %
Engineering 28 33%
Unspecified 3 4%
Business, Management and Accounting 2 2%
Economics, Econometrics and Finance 2 2%
Computer Science 2 2%
Other 15 18%
Unknown 33 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 December 2016.
All research outputs
#7,434,631
of 22,901,818 outputs
Outputs from Frontiers in Neurorobotics
#200
of 867 outputs
Outputs of similar age
#112,296
of 310,683 outputs
Outputs of similar age from Frontiers in Neurorobotics
#6
of 12 outputs
Altmetric has tracked 22,901,818 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 867 research outputs from this source. They receive a mean Attention Score of 4.2. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,683 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.