↓ Skip to main content

Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot

Overview of attention for article published in Frontiers in Neurorobotics, May 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

twitter
13 X users
reddit
1 Redditor

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot
Published in
Frontiers in Neurorobotics, May 2018
DOI 10.3389/fnbot.2018.00022
Pubmed ID
Authors

Tadahiro Taniguchi, Ryo Yoshino, Toshiaki Takano

Abstract

In this paper, we propose an active perception method for recognizing object categories based on the multimodal hierarchical Dirichlet process (MHDP). The MHDP enables a robot to form object categories using multimodal information, e.g., visual, auditory, and haptic information, which can be observed by performing actions on an object. However, performing many actions on a target object requires a long time. In a real-time scenario, i.e., when the time is limited, the robot has to determine the set of actions that is most effective for recognizing a target object. We propose an active perception for MHDP method that uses the information gain (IG) maximization criterion and lazy greedy algorithm. We show that the IG maximization criterion is optimal in the sense that the criterion is equivalent to a minimization of the expected Kullback-Leibler divergence between a final recognition state and the recognition state after the next set of actions. However, a straightforward calculation of IG is practically impossible. Therefore, we derive a Monte Carlo approximation method for IG by making use of a property of the MHDP. We also show that the IG has submodular and non-decreasing properties as a set function because of the structure of the graphical model of the MHDP. Therefore, the IG maximization problem is reduced to a submodular maximization problem. This means that greedy and lazy greedy algorithms are effective and have a theoretical justification for their performance. We conducted an experiment using an upper-torso humanoid robot and a second one using synthetic data. The experimental results show that the method enables the robot to select a set of actions that allow it to recognize target objects quickly and accurately. The numerical experiment using the synthetic data shows that the proposed method can work appropriately even when the number of actions is large and a set of target objects involves objects categorized into multiple classes. The results support our theoretical outcomes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 31 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 22%
Student > Doctoral Student 4 13%
Student > Bachelor 4 13%
Lecturer 3 9%
Student > Master 3 9%
Other 5 16%
Unknown 6 19%
Readers by discipline Count As %
Engineering 11 34%
Computer Science 10 31%
Psychology 2 6%
Agricultural and Biological Sciences 1 3%
Business, Management and Accounting 1 3%
Other 0 0%
Unknown 7 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 May 2018.
All research outputs
#6,499,906
of 25,385,509 outputs
Outputs from Frontiers in Neurorobotics
#133
of 1,040 outputs
Outputs of similar age
#104,717
of 343,970 outputs
Outputs of similar age from Frontiers in Neurorobotics
#5
of 22 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 1,040 research outputs from this source. They receive a mean Attention Score of 4.1. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,970 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.