↓ Skip to main content

Pluripotent stem cells as a model to study non-coding RNAs function in human neurogenesis

Overview of attention for article published in Frontiers in Cellular Neuroscience, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pluripotent stem cells as a model to study non-coding RNAs function in human neurogenesis
Published in
Frontiers in Cellular Neuroscience, January 2013
DOI 10.3389/fncel.2013.00140
Pubmed ID
Authors

Alexandra Benchoua, Marc Peschanski

Abstract

As fine regulators of gene expression, non-coding RNAs, and more particularly micro-RNAs (miRNAs), have emerged as key players in the development of the nervous system. In vivo experiments manipulating miRNAs expression as neurogenesis proceeds are very challenging in the mammalian embryo and totally impossible in the human. Human pluripotent stem cells (hPSCs), from embryonic origin (hESCs) or induced from adult somatic cells (iPSCs), represent an opportunity to study the role of miRNAs in the earliest steps of human neurogenesis in both physiological and pathological contexts. Robust protocols are now available to convert pluripotent stem cells into several sub-types of fully functional neurons, recapitulating key developmental milestones along differentiation. This provides a convenient cellular system for dissecting the role of miRNAs in phenotypic transitions critical to brain development and plasticity that may be impaired in neurological diseases with onset during development. The aim of this review is to illustrate how hPSCs can be used to recapitulate early steps of human neurogenesis and summarize recent reports of their contribution to the study of the role of miRNA in regulating development of the nervous system.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 45 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 33%
Researcher 14 30%
Student > Master 7 15%
Student > Bachelor 3 7%
Lecturer > Senior Lecturer 2 4%
Other 3 7%
Unknown 2 4%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 63%
Biochemistry, Genetics and Molecular Biology 6 13%
Psychology 2 4%
Neuroscience 2 4%
Immunology and Microbiology 1 2%
Other 2 4%
Unknown 4 9%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 December 2013.
All research outputs
#14,175,799
of 22,719,618 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,189
of 4,213 outputs
Outputs of similar age
#167,547
of 280,759 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#98
of 203 outputs
Altmetric has tracked 22,719,618 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,213 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,759 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 203 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.