↓ Skip to main content

Granulocyte colony-stimulating factor (G-CSF) treatment in combination with transplantation of bone marrow cells is not superior to G-CSF treatment alone after cortical stroke in spontaneously…

Overview of attention for article published in Frontiers in Cellular Neuroscience, December 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Granulocyte colony-stimulating factor (G-CSF) treatment in combination with transplantation of bone marrow cells is not superior to G-CSF treatment alone after cortical stroke in spontaneously hypertensive rats
Published in
Frontiers in Cellular Neuroscience, December 2014
DOI 10.3389/fncel.2014.00411
Pubmed ID
Authors

Kai Diederich, Antje Schmidt, Carolin Beuker, Jan-Kolja Strecker, Daniel-Christoph Wagner, Johannes Boltze, Wolf-Rüdiger Schäbitz, Jens Minnerup

Abstract

Granulocyte-colony stimulating factor (G-CSF) and bone marrow derived mononuclear cells (BM-MNCs) have both been shown to improve functional outcome following experimental stroke. These effects are associated with increased angiogenesis and neurogenesis. In the present study, we aimed to determine synergistic effects of G-CSF and BM-NMC treatment on long-term structural and functional recovery after photothrombotic stroke. To model the etiology of stroke more closely, we used spontaneously hypertensive (SH) rats in our experiment. Bone marrow derived mononuclear cells transplantation was initiated 1 h after the onset of photothrombotic stroke. Repeated G-CSF treatment commenced immediately after BM-MNC treatment followed by daily injections for five consecutive days. The primary endpoint was functional outcome after ischemia. Secondary endpoints included analysis of neurogenesis and angiogenesis as well as determination of infarct size. Granulocyte-colony stimulating factor treated rats, either in combination with BM-MNC or alone showed improved somatosensory but not gross motor function following ischemia. No beneficial effect of BM-MNC monotherapy was found. Infarct volumes were comparable in all groups. In contrast to previous studies, which used healthy animals, post-stroke neurogenesis and angiogenesis were not enhanced by G-CSF. In conclusion, the combination of G-CSF and BM-MNC was not more effective than G-CSF alone. The reduced efficacy of G-CSF treatment and the absence of any beneficial effect of BM-MNC transplantation might be attributed to hypertension-related morbidity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 5%
Unknown 19 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 25%
Student > Master 3 15%
Student > Bachelor 2 10%
Professor > Associate Professor 2 10%
Researcher 2 10%
Other 3 15%
Unknown 3 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 25%
Neuroscience 4 20%
Medicine and Dentistry 3 15%
Biochemistry, Genetics and Molecular Biology 2 10%
Psychology 1 5%
Other 1 5%
Unknown 4 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 December 2014.
All research outputs
#15,313,289
of 22,775,504 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,659
of 4,231 outputs
Outputs of similar age
#213,598
of 360,787 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#43
of 84 outputs
Altmetric has tracked 22,775,504 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,231 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 360,787 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 84 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.