↓ Skip to main content

Alternative kynurenic acid synthesis routes studied in the rat cerebellum

Overview of attention for article published in Frontiers in Cellular Neuroscience, January 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Alternative kynurenic acid synthesis routes studied in the rat cerebellum
Published in
Frontiers in Cellular Neuroscience, January 2015
DOI 10.3389/fncel.2015.00178
Pubmed ID
Authors

Tonali Blanco Ayala, Rafael Lugo Huitrón, Liliana Carmona Aparicio, Daniela Ramírez Ortega, Dinora González Esquivel, José Pedraza Chaverrí, Gonzalo Pérez de la Cruz, Camilo Ríos, Robert Schwarcz, Verónica Pérez de la Cruz

Abstract

Kynurenic acid (KYNA), an astrocyte-derived, endogenous antagonist of α7 nicotinic acetylcholine and excitatory amino acid receptors, regulates glutamatergic, GABAergic, cholinergic and dopaminergic neurotransmission in several regions of the rodent brain. Synthesis of KYNA in the brain and elsewhere is generally attributed to the enzymatic conversion of L-kynurenine (L-KYN) by kynurenine aminotransferases (KATs). However, alternative routes, including KYNA formation from D-kynurenine (D-KYN) by D-amino acid oxidase (DAAO) and the direct transformation of kynurenine to KYNA by reactive oxygen species (ROS), have been demonstrated in the rat brain. Using the rat cerebellum, a region of low KAT activity and high DAAO activity, the present experiments were designed to examine KYNA production from L-KYN or D-KYN by KAT and DAAO, respectively, and to investigate the effect of ROS on KYNA synthesis. In chemical combinatorial systems, both L-KYN and D-KYN interacted directly with peroxynitrite (ONOO(-)) and hydroxyl radicals (OH•), resulting in the formation of KYNA. In tissue homogenates, the non-specific KAT inhibitor aminooxyacetic acid (AOAA; 1 mM) reduced KYNA production from L-KYN and D-KYN by 85.1 ± 1.7% and 27.1 ± 4.5%, respectively. Addition of DAAO inhibitors (benzoic acid, kojic acid or 3-methylpyrazole-5-carboxylic acid; 5 μM each) attenuated KYNA formation from L-KYN and D-KYN by ~35% and ~66%, respectively. ONOO(-) (25 μM) potentiated KYNA production from both L-KYN and D-KYN, and these effects were reduced by DAAO inhibition. AOAA attenuated KYNA production from L-KYN + ONOO(-) but not from D-KYN + ONOO(-). In vivo, extracellular KYNA levels increased rapidly after perfusion of ONOO(-) and, more prominently, after subsequent perfusion with L-KYN or D-KYN (100 μM). Taken together, these results suggest that different mechanisms are involved in KYNA production in the rat cerebellum, and that, specifically, DAAO and ROS can function as alternative routes for KYNA production.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 57 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 17%
Student > Doctoral Student 7 12%
Researcher 7 12%
Student > Bachelor 5 9%
Student > Master 5 9%
Other 5 9%
Unknown 19 33%
Readers by discipline Count As %
Neuroscience 8 14%
Biochemistry, Genetics and Molecular Biology 7 12%
Medicine and Dentistry 7 12%
Agricultural and Biological Sciences 4 7%
Immunology and Microbiology 2 3%
Other 4 7%
Unknown 26 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 April 2019.
All research outputs
#18,411,569
of 22,807,037 outputs
Outputs from Frontiers in Cellular Neuroscience
#3,247
of 4,241 outputs
Outputs of similar age
#255,836
of 353,087 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#60
of 82 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,241 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,087 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 82 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.