↓ Skip to main content

Nitric oxide releases Cl− from acidic organelles in retinal amacrine cells

Overview of attention for article published in Frontiers in Cellular Neuroscience, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nitric oxide releases Cl− from acidic organelles in retinal amacrine cells
Published in
Frontiers in Cellular Neuroscience, June 2015
DOI 10.3389/fncel.2015.00213
Pubmed ID
Authors

Vijai Krishnan, Evanna Gleason

Abstract

Determining the factors regulating cytosolic Cl(-) in neurons is fundamental to our understanding of the function of GABA- and glycinergic synapses. This is because the Cl(-) distribution across the postsynaptic plasma membrane determines the sign and strength of postsynaptic voltage responses. We have previously demonstrated that nitric oxide (NO) releases Cl(-) into the cytosol from an internal compartment in both retinal amacrine cells and hippocampal neurons. Furthermore, we have shown that the increase in cytosolic Cl(-) is dependent upon a decrease in cytosolic pH. Here, our goals were to confirm the compartmental nature of the internal Cl(-) store and to test the hypothesis that Cl(-) is being released from acidic organelles (AO) such as the Golgi, endosomes or lysosomes. To achieve this, we made whole cell voltage clamp recordings from cultured chick retinal amacrine cells and used GABA-gated currents to track changes in cytosolic Cl(-). Our results demonstrate that intact internal proton gradients are required for the NO-dependent release of internal Cl(-). Furthermore, we demonstrate that increasing the pH of AO leads to release of Cl(-) into the cytosol. Intriguingly, the elevation of organellar pH results in a reversal in the effects of NO. These results demonstrate that cytosolic Cl(-) is closely linked to the regulation and maintenance of organellar pH and provide evidence that acidic compartments are the target of NO.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 22%
Student > Ph. D. Student 2 22%
Professor > Associate Professor 1 11%
Student > Doctoral Student 1 11%
Professor 1 11%
Other 2 22%
Readers by discipline Count As %
Neuroscience 3 33%
Agricultural and Biological Sciences 2 22%
Biochemistry, Genetics and Molecular Biology 1 11%
Business, Management and Accounting 1 11%
Medicine and Dentistry 1 11%
Other 1 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 June 2015.
All research outputs
#14,812,531
of 22,807,037 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,389
of 4,241 outputs
Outputs of similar age
#147,086
of 266,118 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#68
of 114 outputs
Altmetric has tracked 22,807,037 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,241 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,118 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 114 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.