↓ Skip to main content

Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels

Overview of attention for article published in Frontiers in Cellular Neuroscience, July 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
84 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels
Published in
Frontiers in Cellular Neuroscience, July 2015
DOI 10.3389/fncel.2015.00259
Pubmed ID
Authors

Francesco Miceli, Maria Virginia Soldovieri, Paolo Ambrosino, Michela De Maria, Laura Manocchio, Alessandro Medoro, Maurizio Taglialatela

Abstract

Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na(+), Ca(2+) and K(+) voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 84 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 83 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 27%
Researcher 15 18%
Student > Master 9 11%
Student > Bachelor 6 7%
Professor > Associate Professor 5 6%
Other 12 14%
Unknown 14 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 19 23%
Medicine and Dentistry 14 17%
Biochemistry, Genetics and Molecular Biology 12 14%
Neuroscience 8 10%
Pharmacology, Toxicology and Pharmaceutical Science 7 8%
Other 7 8%
Unknown 17 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 July 2015.
All research outputs
#15,340,005
of 22,817,213 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,663
of 4,241 outputs
Outputs of similar age
#153,810
of 262,607 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#74
of 129 outputs
Altmetric has tracked 22,817,213 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,241 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,607 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 129 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.