↓ Skip to main content

Tactile Stimulation Evokes Long-Lasting Potentiation of Purkinje Cell Discharge In Vivo

Overview of attention for article published in Frontiers in Cellular Neuroscience, February 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tactile Stimulation Evokes Long-Lasting Potentiation of Purkinje Cell Discharge In Vivo
Published in
Frontiers in Cellular Neuroscience, February 2016
DOI 10.3389/fncel.2016.00036
Pubmed ID
Authors

K. B. Ramakrishnan, Kai Voges, Licia De Propris, Chris I. De Zeeuw, Egidio D’Angelo

Abstract

In the cerebellar network, a precise relationship between plasticity and neuronal discharge has been predicted. However, the potential generation of persistent changes in Purkinje cell (PC) spike discharge as a consequence of plasticity following natural stimulation patterns has not been clearly determined. Here, we show that facial tactile stimuli organized in theta-patterns can induce stereotyped N-methyl-D-aspartate (NMDA) and gamma-aminobutyric acid (GABA-A) receptor-dependent changes in PCs and molecular layer interneurons (MLIs) firing: invariably, all PCs showed a long-lasting increase (Spike-Related Potentiation or SR-P) and MLIs a long-lasting decrease (Spike-Related Suppression or SR-S) in baseline activity and spike response probability. These observations suggests that tactile sensory stimulation engages multiple long-term plastic changes that are distributed along the mossy fiber-parallel fiber (MF-PF) pathway and operate synergistically to potentiate spike generation in PCs. In contrast, theta-pattern electrical stimulation (ES) of PFs indistinctly induced SR-P and SR-S both in PCs and MLIs, suggesting that tactile sensory stimulation preordinates plasticity upstream of the PF-PC synapse. All these effects occurred in the absence of complex spike changes, supporting the theoretical prediction that PC activity is potentiated when the MF-PF system is activated in the absence of conjunctive climbing fiber (CF) activity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 30%
Student > Ph. D. Student 7 21%
Student > Master 3 9%
Student > Postgraduate 2 6%
Professor > Associate Professor 2 6%
Other 3 9%
Unknown 6 18%
Readers by discipline Count As %
Neuroscience 13 39%
Agricultural and Biological Sciences 5 15%
Engineering 3 9%
Social Sciences 2 6%
Computer Science 1 3%
Other 1 3%
Unknown 8 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 May 2016.
All research outputs
#14,732,737
of 25,930,295 outputs
Outputs from Frontiers in Cellular Neuroscience
#1,802
of 4,765 outputs
Outputs of similar age
#144,334
of 313,155 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#33
of 111 outputs
Altmetric has tracked 25,930,295 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,765 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,155 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 111 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.