↓ Skip to main content

Persistent Gliosis Interferes with Neurogenesis in Organotypic Hippocampal Slice Cultures

Overview of attention for article published in Frontiers in Cellular Neuroscience, May 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
74 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Persistent Gliosis Interferes with Neurogenesis in Organotypic Hippocampal Slice Cultures
Published in
Frontiers in Cellular Neuroscience, May 2016
DOI 10.3389/fncel.2016.00131
Pubmed ID
Authors

Johannes Gerlach, Catharina Donkels, Gert Münzner, Carola A. Haas

Abstract

Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC), which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within 7 days of cultivation. Accordingly, reverse transcription quantitative polymerase chain reaction analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential of enabling neurogenesis under neuropathological conditions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 1%
Unknown 73 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 23%
Student > Master 16 22%
Researcher 7 9%
Student > Bachelor 6 8%
Student > Postgraduate 4 5%
Other 11 15%
Unknown 13 18%
Readers by discipline Count As %
Neuroscience 24 32%
Agricultural and Biological Sciences 14 19%
Biochemistry, Genetics and Molecular Biology 8 11%
Medicine and Dentistry 6 8%
Engineering 2 3%
Other 6 8%
Unknown 14 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2016.
All research outputs
#17,803,516
of 22,870,727 outputs
Outputs from Frontiers in Cellular Neuroscience
#2,945
of 4,256 outputs
Outputs of similar age
#236,562
of 334,246 outputs
Outputs of similar age from Frontiers in Cellular Neuroscience
#59
of 83 outputs
Altmetric has tracked 22,870,727 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,256 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,246 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 83 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.